نيون → فلور ← أكسجين
-

F

Cl
9F
المظهر
غاز أصفر شاحب اللون

الفلور السائل عند درجات حرارة منخفضة جداً.
الخواص العامة
الاسم، العدد، الرمز فلور، 9، F
تصنيف العنصر هالوجين
المجموعة، الدورة، المستوى الفرعي 17، 2، p
الكتلة الذرية 18.9984032
توزيع إلكتروني 1s2 2s2 2p5
توزيع الإلكترونات لكل غلاف تكافؤ 2,سبعة (صورة)
الخواص الفيزيائية
الطور غاز
الكثافة (0 °س، 101.325 كيلوباسكال)
1.7 غ/ل
كثافة السائل عند نقطة الغليان 1.505 غ·سم−3
نقطة الانصهار 53.53 ك، −219.62  °س
نقطة الغليان 85.03 ك، −188.12  °س
نقطة ثلاثية 53.48 كلفن (-220°س)، 
90  كيلوباسكال
النقطة الحرجة 144.13 ك، 5.172 ميغاباسكال
حرارة الانصهار F2) 0.510)
حرارة التبخر F2) 6.51)
السعة الحرارية (عند 25 °س) (F2)
31.304 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن) 38 44 50 58 69 85
الخواص الذرية
أرقام الأكسدة −1
(يؤكسد الأكسجين)
الكهرسلبية 3.98 (مقياس باولنغ)
طاقات التأين الأول: 1681.0
الثاني: 3374.2 كيلوجول·مول−1
الثالث: 6050.4 كيلوجول·مول−1
نصف قطر تساهمي 64 بيكومتر
نصف قطر فان دير فالس 135 بيكومتر
خواص أخرى
البنية البلورية نظام بلوري مكعب
المغناطيسية مغناطيسية معاكسة
الناقلية الحرارية 25.9 ميلي واط·متر−1·كلفن−1 (300 كلفن)
رقم CAS 7782-41-4
النظائر الأكثر ثباتاً
الموضوعة الرئيسية: نظائر الفلور
النظائر الوفرة الطبيعية عمر النصف نمط الاضمحلال طاقة الاضمحلال MeV ناتج الاضمحلال
18F مصطنع 109.77 دقيقة 97% 0.64 18O
ε 3% 1.656 18O
19F 100% 19F هونظير مستقر ولهعشرة نيوترون

الفلور هوعنصر كيميائي رمزه F وعدده الذرّي 9، ويكون على هيئة غاز ثنائي الذرة F2 له لون أصفر شاحب في الظروف القياسيّة من الضغط ودرجة الحرارة، وهوغاز سام ذوتأثير سلبي على الكائنات الحيّة. يقع عنصر الفلور على رأس مجموعة الهالوجينات في الجدول الدوري، وهوذونشاط كيميائي كبير، إذ أنّه أكثر عناصر الجدول الدوري كهرسلبية، ويشكّل مركّبات كيميائية مع أغلبها، حتى مع بعض الغازات النبيلة؛ وتسمّى أملاح عنصر الفلور باسم الفلوريدات.

يقع عنصر الفلور في المرتبة 13 من بين العناصر الكيميائية بالنسبة لوفرته في كوكب الأرض، وفي المرتبة 24 بالنسبة لوفرته في الكون. يعدّ معدن الفلوريت مصدر التعدين الأساسي للفلور، إذ يستحصل عليه من خلال عملية التحليل الكهربائي؛ ومن المعادن الحاوية على عنصر الفلور أيضاً معدن الكريوليت النادر، والذي يستخدم في فهم الفلزات كصهيرة من أجل تخفيض نقطة انصهار الفلزّات أثناء التعدين. يستطيع الفلور تشكيل عدد كبير من الفلوريدات اللاعضوية والعضوية، والتي لها الكثير من التطبيقات الصناعية المهمّة.

تعدّ الفلوريدات العضوية من المواد الثابتة ضد التحلّل الحيوي لذلك تصنّف ضمن الغازات الدفيئة التي تسبّب الاحتباس الحراري. باللقاء يفيد أيون الفلوريد في مقاومة نخر الأسنان، لذلك يضاف بكمّيّات قليلة إلى هجريب معاجين الأسنان بالإضافة إلى ملح الطعام وماء الشرب في بعض البلدان.

التاريخ وأصل التسمية

صورة من كتاب تمثّل صناعة الفولاذ.

الاكتشافات الأولية

في سنة 1529 وصف عالم التعدين غيورغيوس أغريكولا معدن الفلوريت كمادّة مضافة ملائمة أثناء صهر الفلزّات، إذ تعمل على تخفيض نقطة انصهارها أثناء المعالجة.. ولتمييز تلك الخاصّية أطلق أغريكولا الحدثة اللاتينية فلوريس fluorés (والتي تعني الجريان) على صخور الفلوريت. تطوّر الاسم لاحقاً إلى فلورسبار fluorspar وبعد ذلك إلى فلوريت fluorite. عُرف فيما بعد أنّ هجريب الفلوريت هومن فلوريد الكالسيوم CaF2.

استُخدم حمض الهيدروفلوريك منذ أواسط القرن السابع عشر في تنميش الزجاج (معالجته بالحمض)، وكان أندرياس سيغيسموند مارغراف أوّل من وصف تلك العملية بشكل مفصّل سنة 1764 عندما قام بتسخين الفلوريت مع حمض الكبريتيك ممّا أدّى إلى تخريش الإناء الزجاجي الحاوي على المزيج. كرّر العالم كارل فلهلم شيله التجربة سنة 1771 وقام بتسميّة الناتج الحمضي باسم fluss-spats-syran (حمض الفلورسبار).. وفي سنة 1810 اقترح الفيزيائي أندريه ماري أمبير ارتباط الهيدروجين مع عنصر مشابه للكلور في هجريب حمض الهيدروفلوريك، أمّا همفري ديفي فاقترح تسميّة ذلك العنصر - غير المعروف آنذاك - باسم fluorine وذلك من حمض الفلوريك. وبذلك استخدمت حدثة فلور لوصف هذا العنصر في الكثير من اللغات الأوروبيّة مع بعض التحويرات البسيطة، في حين أنّ اللغة اليونانية والروسية وبعض اللغات الأخرى تستعمل اسم فتور وتحويرات لها، وذلك من الإغريقية φθόριος فثوريوس بمعنى مدمّر أومخرّش. كرمز موحّد للعنصر استخدم حرف F لذلك، مع الفهم حتى الرمز Fl استخدم في النشرات الفهمية الأولى في الماضي.

عزل العنصر

كانت التجارب الأولية على الفلور ومركّباته خطيرة إلى درجة أنّ الكثير من فهماء القرن التاسع عشر الذين أجروا تجاربهم على ذلك العنصر أُطلق عليهم اسم ضحايا الفلور، وذلك بعد التجارب غير الناجحة وغير الموفّقة باستخدام حمض الهيدروفلوريك، ومن بين هؤلاء الفهماء جميع من ديفي وغي ـ لوساك وتينار ومواسان. تمحورت تجارب الفصل على التحليل الكهربائي للفلوريدات، ولكن ما أعاق عزل عنصر الفلور هوكونه عالي التخريش إلى حدّ كبير، وذلك لكلّ من العنصر بحدّ ذاته أوفلوريد الهيدروجين، بالإضافة إلى عدم وجود كهرل مناسب لإجراء عمليّة العزل. اقترح إدموند فريمي أنّ التحليل الكهربائي لحمض هيدروفلوريك النقي وسيلة مناسبة للحصول على الفلور، وقام بتصميم طريقة لإنتاج عيّنات خاليّة من الماء (لامائيّة) من بيفلوريد البوتاسيوم؛ لكنّه عثر أنّ فلوريد الهيدروجين الجافّ لا ينقل التيّار الكهربائي.

تابع هنري مواسان، والذي كان طالباً سابقاً لفيرمي، التجارب في هذا السياق، واكتشف بعد محاولات كثيرة والكثير من التجارب المضنية أنّ مزيجاً من بيفلوريد البوتاسيوم وفلوريد الهيدروجين الجافقد يكون ناقلاً للتيّار، ممّا يمكّن من إجراء التحليل الكهربائي. من أجل تجنّب حدوث عمليّة تآكل سريعة لقطب البلاتين في خليته الكهركيميائية قام مواسان بتبريدها إلى درجات حرارة منخفضة، كما قام باستعمال أقطاب من الإريديوم، ممّا مكّنه سنة 1886 من عزل الفلور لأول مرة. قبل شهرين من وفاته استلم مواسان جائزة نوبل في الكيمياء سنة 1906 كتقدير لأبحاثه عن هذا العنصر.

استخدامات لاحقة

حنجور زجاجي يحوي على سداسي فلوريد اليورانيوم.

أجرت شركة فرجدير، والتي كانت تابعة لشركة جنرال موتورز (GM)، تجاربها على استخدام مركّبات كلوروفلوروكربون كمثلِّجات وذلك في أواخر عقد 1920، وكنتيجة لذلك قام مشروع مشهجر بين GM ودوبونت سنة 1930 من أجل ترويج تلك المركّبات التي عهدت باسم فريون، وخاصة فريون-12. مع تزايد الطلب على هذه المركّبات قامت شركة دوبونت بشراء حقوق الإنتاج وطوّرت الكثير من مركّبات الفريون الأخرى. اكتشف بولي رباعي فلوروالإيثيلين مصادفةً سنة 1938 عندما كان روي بلنكيت يعمل على تطوير مواد التثليج في مختبرات دوبونت. بسبب خواصها الممتازة في العزل الكيميائي والحراري أصبح لهذه المادة شهرة كبيرة، وأنتج منها كمّيّات كبيرة سنة 1941 وسوّقت تحت اسم تيفلون Teflon.

أنتج كمّيّات كبيرة من عنصر الفلور أثناء الحرب العالميّة الثانيّة، سواء من قبل ألمانيا النازية، أوالولايات المتّحدة الأمريكية وذلك لأغراض مختلفة. استخدم الألمان التحليل الكهربائي عند درجات حرارة مرتفعة للحصول على أطنان من ثلاثي فلوريد الكلور، وذلك في معامل شركة إي.غة. فاربن I.G. Farben من أجل تحضير القنابل الحارقة؛ وكذلك من قبل الولايات المتّحدة الأمريكية من أجل مشروع مانهاتن لصنع القنبلة النووية، وذلك لإنتاج سداسي فلوريد اليورانيوم والذي استخدم من أجل تخصيب اليورانيوم. أدّى الاستمرار في الأبحاث النووية بعد الحرب إلى تطوير كيمياء الفلور لاحقاً.

الوفرة الطبيعية

في الكون

وفرة بعض العناصر الكيميائية في النظام الشمسي بالنسبة للفلور
العدد
الذرّي
العنصر الكمّية
النسبية
6 كربون 4,800
7 نتروجين 1,500
8 أكسجين 8,800
9 فلور 1
10 نيون 1,400
11 صوديوم 24
12 مغنسيوم 430

يوجد عنصر الفلور في الكون بنسبة 400 جزء في البليون (ppb)، وهوبذلك يقع في المرتبة 24 من حيث الوفرة بالنسبة لباقي العناصر الكيميائية. ومع ذلك، فإنّ هذه النسبة قليلة بالنسبة لباقي العناصر الخفيفة، إذ أنّ العناصر من الكربون إلى المغنسيوم ذات وفرة أكبر في الكون لمرتبة تصل إلى عشرين ضعف أوأكثر. يعود هذا الأمر إلى أنّ تفاعلات الانصهار النجمي تتجاوز الفلور، إذ أنّ ذرّات هذا العنصر طالما تخليقها تكون ذات مبتر نووي كبير، ممّا يسمح بالاندماج النووي مع ذرّة هيدروجين أوهيليوم لتشكّل الأكسجين أوالنيون على الترتيب.

أمّا النسبة المتبقية من الفلور في الكون فهي تتشكّل حسب أحد ثلاثة تفسيرات:

  • أثناء الاستعار الأعظم من النوع 2 يحدث قذف لذرّات النيون بجسيمات نيوترينووالتي تحوّلها إلى فلور؛
  • يمكن للرياح الشمسية لنجوم وولف-رايت حتى تحمل ذرّات الفلور بعيداً عن أية ذرّات من الهيدروجين أوالهيليوم؛
  • يحمل الفلور بعيداً من تيّارات الحمل الحراري الناتجة عن اندماج نجوم العملاق المقارب.

على الأرض

يقع الفلور في المرتبة 13 من حيث الوفرة بالنسبة لباقي العناصر الكيميائية في القشرة الأرضية، إذ يتراوح هجريزه فيها بين 600 - 700 جزء في المليون (ppm) كتلةً. طالما وجود غاز الفلور في غلاف الأرض الجوّي فإنه سيتفاعل بسهولة كبيرة مع بخار الماء في الجوّ، ممّا يمنع من وجوده بالتالي على شكل عنصر حر. بسبب النشاط الكيميائي الكبير للفلور فهويوجد فقط بشكل مرتبط مع عناصر أخرى في أشكال معدنيّة مثل فلوريت وفلورأباتيت وكريوليت، وهي معادن ذات أهميّة صناعيّة كبيرة. كما تحوي بعض المعادن الأخرى مثل التوباز على عنصر الفلور في هجريبها.

لمعدن الفلوريت الصيغة الكيميائية CaF2، وهوتعبير عن فلوريد الكالسيوم، ويكون على شكل معدن ملوّن له وفرة طبيعيّة كبيرة، ولذلك يعدّ مصدر التعدين الأساسي للفلور. تعدّ الصين والمكسيك من أكبر الدول المنتجة لهذه الخامة (بيانات 2006). كانت الولايات المتّحدة الأمريكية الرائدة في إنتاج الفلوريت في أوائل القرن العشرين، لكنّها توقّفت عن تعدينه منذ سنة 1995.

ما يعيق استخدام فلورأباتيت (Ca5(PO4)3F) في تعدين الفلور هوانخفاض الكسر الكتلي (3.5%)، لذلك يستخدم في إنتاج الفوسفات. تنتج كمّيّات قليلة من مركّبات الفلور في الولايات المتّحدة من حمض سداسي فلوروسيليسيك (H2SiF6)، وهوناتج ثانوي من صناعة الفوسفات.

أمّا الكريوليت Na3AlF6 فهومعدن يستعمل بشكل أساسي في إنتاج الألومنيوم، لكنّه أكثر معادن الفلور ندرةً، ويهجرّز في مناطق جغرافيّة محدّدة. كان المصدر الرئيسي لتعدين الكريوليت في منجم يقع غربي اليونان، والذي أغلق سنة 1987، وأغلب الكريوليت الموجود حالياً يحصل عليه بشكل صناعي.

معادن الفلور الأساسية
فلوريت فلورأباتيت كريوليت

على العكس من باقي الهاليدات فإنّ الفلوريدات غير منحلّة في الماء، لذلك لا توجد بتراكيز تمكّن من استخراجها اقتصاديّاً من مياه البحر المالحة. عثر على كمّيّات نزرة وشحيحة من فلوريدات عضوية ذات مصدر غير معلوم في الثورات البركانية والينابيع الجيوحرارية. إنّ وجود غاز الفلور في البلّورات، وذلك كتفسير للرائحة الناتجة عن تهشيم معدن أنتوزونيت antozonite، وهوشكل من أشكال الفلوريت، أمرٌ مشكوك بصحته. على الرغم من ذلك، أظهرت دراسة سنة 2012 وجود ما نسبته 0.04% وزناً من غاز F2 في عيّنة أنتوزونيت، وعزي وجود تلك المتضمّنات إلى الإشعاع الصادر عن وجود كمّيّات ضئيلة من عنصر اليورانيوم في الخامة.

الإنتاج والتحضير

بلغ تعدين الفلوريت، وهوالمصدر الرئيسي للفلور في العالم، ذروته سنة 1989 عندما استُخرج 5.6 مليون طن متري من هذه الخامة. أدّت التقييدات على إنتاج مركّبات كلوروفلوروكربون (CFCs) إلى تخفيض الإنتاج إلى 3.6 مليون طن سنة 1994، ثم زاد الإنتاج من حينها مجدّداً. في سنة 2003 سُجّل إنتاج حوالي 4.5 مليون طن مع عائدات بلغت 550 مليون دولار أمريكي؛ وقدّرت تقارير لاحقة المبيعات العالمية من صناعات الفلور الكيميائية سنة 2011 بحوالي 15 بليون دولار أمريكي، وتنبّأت حتى يقفز الإنتاج للفترة ما بين 2016–2018 إلى قيمة تتراوح بين 3.5 إلى 5.9 مليون طن، وعائدات لا تقلّ عن 20 بليون دولار.

الإنتاج الصناعي

خلايا إنتاج الفلور صناعياً في منشأة في بريطانيا.

تستخدم طريقة مواسان في إنتاج كمّيات صناعية من الفلور عن طريق إجراء تحليل كهربائي لمصهور مزيج من فلوريد البوتاسيوم/فلوريد الهيدروجين بفرق جهد بينثمانية - 12 فولت. أثناء العملية تختزل أيونات الهيدروجين على مهبط من الفولاذ لينتج غاز الهيدروجين، باللقاء، تتأكسد أيونات الفلوريد على مصعد مصنوع من الكربون لينتج غاز الفلور.:

يتم حمل درجات الحرارة أثناء العملية إلى درجة تتراوح بين 70 - 130 °س، إذ أنّ KF•2HF ينصهر عند 70 °س، ووجوده ضروري لأنّ HF النقي لا يمكن تحليله كهربائياً. يمكن تخزين الفلور في خزّانات أسطوانيّة من الفولاذ تكون مبطّنة من الداخل لحمايتها من التآكل، وذلك عند درجات حرارة أقل من 200 °س، وإلاّ فإنّ استخدام النيكل في صناعتها سيكون ضرورياً. تُصنع الصمّامات والأنابيب في منشأة إنتاج الفلور عادةً من النيكل، ويمكن استعمال سبيكة مونيل من أجل تمديدات الأنابيب أيضاً. يجب الحذر أثناء إنتاج الفلور ونقله من عدم وجود أيّ رطوبة أومواد دهنية، لذلك يتم العزل عادةً باستخدام التيفلون.

التحضير المخبري

تمكّن العالم كارل كريستي Karl O. Christe في سنة 1986 من تصميم طريقة مخبرية لإنتاج غاز الفلور بمردود مرتفع وتحت الضغط الجوي:

إنّ المواد المستخدمة في التفاعلات أعلاه معروفة منذ أكثر من 100 سنة، لكنّ مواسان استخدم كيفية التحليل الكهربائي بدل التفاعل المباشر. غاز الفلور الناتج صناعياً أومخبرياً نشيط جداً بحيث لا يمكن عزله كيميائياً.

النظائر

يوجد هناك نظير واحد فقط للفلور في الطبيعة وبشكل وفير، وهوالنظير فلور-19 19F. لهذا النظير نسبة مغناطيسية دورانية مرتفعة، وحساسية استثنائية للحقول المغناطيسية، ونظراً لأنّه النظير الوحيد المستقر فإنّه يستخدم في التصوير بالرنين المغناطيسي.

للفلور 17 نويدة مشعّة لها عدد كتلي يتراوح بين 14 و31، وجميعها مصطنعة ولا توجد في الطبيعة، وأطولها عمراً هوالنظير فلور-18 18F، والذي يبلغ عمر النصف له 109.77 دقيقة. أمّا باقي النظائر المشعّة فلها قيم عمر نصف أقلّ من 70 ثانية، ومعظمها يضمحلّ في أقلّ من نصف ثانية. يخضع النظيران فلور-17 وفلور-18 أثناء الاضمحلال إلى عمليّة إصدار بوزيتروني β+، أمّا النظائر الأخفّ فتضمحلّ بعملية اصطياد إلكترون، في حين أنّ النظائر الأثقل من فلور-19 تخضع إلى اضمحلال بيتا أوإصدار نيوتروني. هناك مصاوغ نووي واحد للفلور وهو18mF، وله عمر نصف يبلغ 234 نانوثانية.

الخواص الفيزيائية

البنية البلّوريّة للفلور الصلب من النمط β. تشير الكرات إلى جزيئات F2.

يكون الفلور في الشروط العادية من الضغط ودرجة الحرارة على شكل غاز ذي لون أصفر شاحب، وله رائحة واخزة قابلة للكشف عند تراكيز تصل إلى 20 جزء في البليون (ppb). يختلف مدى لون الغاز حسب سماكة الطبقات الموجودة في الإناء الحاوي له، أي حسب الهجريز، إذ أنّهقد يكون عديم اللون في التراكيز الضئيلة، وفي التراكيز المرتفعة يصبح ذا لون أصفر. عند درجات حرارة أقل من −188 °سقد يكون الفلور على شكل سائل له لون أصفر يشبه لون الكناري المميّز. للفلور كثافة مقدارها 1.6959 كغ/م³ عند الدرجة 0 °س وضغط 1013 هيكتوباسكال، بالتالي فهوأكثف من الهواء. تقع النقطة الحرجة للفلور عند ضغط 52.5 بار ودرجة حرارة مقدارها 144.2 كلفن (−129 °س).

تبلغ نقطة انصهار الفلور −219.52 °س؛ وهناك شكلان معروفان من الفلور الصلب، أحدهماقد يكون عند درجات حرارة تقع بين −227.6 °س ونقطة انصهار الفلور، ويكون على شكل نظام بلّوري مكعّب تبلغ قيمة ثابت الشبكة البلّورية له a = 667 بيكومتر، ويعهد هذا الشكل بالنمط بيتّا β.قد يكون الشكل بيتّا شفّافاً وغير صلد، وله بنية بلّورية مكعّبة غير منتظمة، وشبيهة بالتي عند الأكسجين الصلب المتبلور حديثاً، وذلك على العكس من بنية النظام البلّوري المعيني القائم الموجودة عند باقي الهالوجينات الصلبة. أمّا عند درجات حرارة دون −227.6 °س فيكون شكل الفلور الصلب من النمط ألفا α، وهونمط شاف وصلد، يتبلور حسب نظام بلوري أحادي الميل، تكون ثوابت الشبكة البلورية له حسب ما يلي: a = 550 بيكومتر، وb = 328 بيكومتر، وc = 728 بيكومتر، والزاوية β = 102.17°.قد يكون هذا التحوّل الطوري من النمط بيتّا β إلى ألفا α في الفلور الصلب ناشراً للحرارة بشكل أكبر من تكاثف الفلور، ويمكن حتىقد يكون عنيفاً.

البنية الجزيئية

مخطّط المدارات الجزيئية لجزيء الفلور

يوجد الفلور في حالته العنصريّة على شكل جزيء ثنائي الذرّة F2، مثله كمثل باقي عناصر مجموعة الهالوجينات. يبلغ طول الرابطة F-F في جزيء الفلور 144 بيكومتر، وهي بذلك أقصر من الرابطة التساهمية البسيطة كربون-كربون (154 بيكومتر). على الرغم من قصر هذه الرابطة الكيميائية إلّا أنّ طاقة تفكّك الرابطة F-F ضئيلة (158 كيلوجول/مول) بالمقارنة مع الروابط الأخرى، وهي تقارب طاقة تفكك جزيء اليود، والذي له طول رابطة يبلغ 266 بيكومتر. يعود ذلك إلى أنّ الأزواج غير الرابطة في ذرّات الفلور تتقارب عند تشكيل الجزيء ممّا يؤدّي إلى تنافرها، وهذا يقود في النهاية إلى سهولة انفصام الرابطة، والذي يفسّر بالتالي النشاط الكيميائي الكبير للفلور.

حسب نظرية المدارات الجزيئية فإنّ المدارات الذرّية s وp للذرّات المنفردة تتقارب لتشكل مدارات جزيئيّة رابطة وأخرى مضادّة للترابط. خلال الارتباط تتحوّل المدارات الذرّيّة 1s و2s إلى المدارات الجزيئيّة σs وσs*. بما أنّ هذه المدارات الجزيئية تكون ممتلئةً بالكامل بالالكترونات، لذلك لاقد يكون لها دور في عملية الارتباط. باللقاء، فإنّ المدارات الذرّيّة 2p في ذرّات الفلور المنفردة تتقارب لتشكّل ستّة مدارات جزيئية ذات مستويات طاقية متباينة، وهي: المدارات الرابطة σp وπy وπz بالإضافة إلى المدارات المضادّة للترابط σp* وπy* وπz*. تمتلك المدارات π مستويات طاقة متساوية كما هوموضّح في مخطط المدارات الجزيئية. عند توزيع الإلكترونات في المدارات الجزيئية تمتلئ مدارات π الرابطة والمضادة للترابط، لذلك فإن رتبة الرابطة في جزيء الفلور هي 1 = 2/(4-6)، كما يتّصف الجزيء بأنّ له مغناطيسية معاكسة.

الخواص الكيميائية

لذرّة الفلور تسعة إلكترونات، وهي بذلك أقلّ بإلكترون واحد من النيون، ويكون التوزيع الإلكتروني كما يلي: 1s22s22p5، بحيث يملأ إلكترونان الغلاف الداخلي وسبعة إلكترونات الغلاف الخارجي للذرّة، أي ينقصها إلكترون واحد لتكمل الغلاف الذرّي الخارجي. لا تساهم الإلكترونات الخارجية في عملية الحجب النووي، بشكل تكون فيه الشحنة النووية الفعالة 7 = 2 - 9؛ ممّا يؤثّر على خواص الذرّة بشكل عام. إنّ طاقة التأيّن الأولى للفلور لها ثالث أعلى قيمة من بين جميع العناصر، وذلك بعد الهيليوم والنيون، ممّا يصعّب من مهمّة إزالة الإلكترونات من ذرّات الفلور المعتدلة. كما أنّ للفلور ألفة إلكترونية عالية، وهي الثانية بعد الكلور، ممّا يجعلها تميل إلى التقاط إلكترون من أجل حتى تصبح متساوية إلكترونيّاً مع الغاز النبيل المجاور، وهوالنيون،. لذلك يمكن تفسير أنّ الفلور أكثر عناصر الجدول الدوري كهرسلبية على الإطلاق. يبلغ نصف القطر التساهمي للفلور حوالي 60 بيكومتر، وله أصغر قيمة بين عناصر الدورة الثانية.

التفاعلية

إنّ طاقة الرابطة في جزيء الفلور F2 هي أقلّ بكثير من نظيراتها في الكلور Cl2 أوBr2، وهي مماثلة من حيث الوهن لرابطة البيروكسيد سهلة الفصم. على ضوء ذلك، وبإلاضافة إلى الكهرسلبية المرتفعة لهذا العنصر، يمكن تفسير التفاعلية العالية للفلور وارتباطه الشديد بالعناصر المغايرة للفلور. لذلك فإنّ الفلور ينتمي إلى أقوى المؤكسدات الفعّالة عند درجة حرارة الغرفة، إذ يمكن حتى يتفاعل مع أغلب المواد، حتى الخامل منها مثل مسحوق الفولاذ، أوشظايا الزجاج أوألياف الأسبست والتي تتفاعل بسرعة مع غاز الفلور على البارد؛ أمّا الخشب والماء فيشتعلان فوراً عند تعرّضهما إلى تيّار من غاز الفلور. تؤثّر الشروط المحيطة على تفاعل الفلور مع الماء، فعند تمرير كمّيّات ضئيلة من الفلور في الماء البارد يتشكّل بيروكسيد الهيدروجين (الماء الأكسجيني) وحمض الهيدروفلوريك:

باللقاء فإنّه عند تفاعل كمّيّات فائضة من الفلور مع كمّيّات أقلّ من الماء، أوالجليد أوالهيدروكسيدات يتشكّل الأكسجين وثنائي فلوريد الأكسجين كمنتجات رئيسية.

يستطيع الفلور حتى يتفاعل مع جميع العناصر الكيميائية عدا الهيليوم والنيون، ممّا يعني أنّه يستطيع التفاعل مع الغازات النبيلة الأثقل، فيتفاعل الفلور مع الرادون بسهولة، في حبن أنّ تفاعله مع الزينون والكريبتون يحتاج وجود شروط خاصّة. يتطلّب تفاعل عنصر الفلور مع الفلزّات شروطاً متفاوتة، فالفلزّات القلوية تسبّب الانفجارات، في حين أنّ الفلزّات القلوية الترابية تبدي فعالية كيميائية عنيفة طالما وجود كمّيات منها؛ وعلى العموم من أجل تجنّب حالة التخميل الناتجة عن تشكّل طبقات من فلوريدات الفلزات، ينبغي حتى تكون الفلزّات المتبقية مثل الألومنيوم والحديد على شكل مساحيق؛ في حين أنّ الفلزّات النبيلة تتطلّب وجود غاز الفلور بحالة نقيّة عند درجات حرارة تتراوح بين 300 - 450 °س لتشكل الفلوريدات الموافقة.

تتفاعل بعض اللافلزات الصلبة مثل الكبريت والفوسفور بعنف مع الفلور المسيّل، كما يتفاعل كبريتيد الهيدروجين وثنائي أكسيد الكبريت بشكل فوري مع الفلور، أمّا حمض الكبريتيك فيتطلّب تفاعله مع الفلور درجات حرارة مرتفعة. يتفاعل أسود الكربون مع الفلور عند درجة حرارة الغرفة ليعطي فلوروالميثان، أمّا الغرافيت فيعطي مع غاز الفلور عند درجات حرارة أعلى 400 °س مركّب غير ستوكيومتري من أحادي فلوريد الكربون، أمّا عند درجات حرارة أعلى من ذلك فتتشكّل مركّبات فلوروكربون الغازية، أحياناً بشكل انفجاري. يتفاعل كلّ من أحادي أكسيد الكربون وثنائي أكسيد الكربون مع الفلور عند درجة حرارة الغرفة أوأعلى بقليل، في حين أنّ المركّبات العضوية مثل البرافينات وغيرها تتفاعل بعنف وشدّة أكبر، بحيث أنّه حتّى مركّبات هاليد الألكيل كاملة الاستبدال مثل رباعي كلوريد الكربون يمكن لها حتى تنفجر، والتي هي عادةً ما تكون غير قابلة للاشتعال. بشكل عنيف وانفجاري يتفاعل غاز الهيدروجين مع الفلور، ليشكل فلوريد الهيدروجين؛ باللقاء فإنّ غاز النتروجين يتطلّب وجود تفريغ كهربائي عند درجات حرارة مرتفعة لحدوث التفاعل، ويعود ذلك إلى الرابطة الثلاثية القويّة في جزيء النتروجين، أمّا الأمونياك فيتفاعل بشكل انفجاري. لا يرتبط الأكسجين مع الفلور عند درجات حرارة معتدلة، ولا يحدث التفاعل إلاّ بشروط قاسية بوجود تفريغ كهربائي عند درجات حرارة وضغوط منخفضة، ليعطي منتجات غير مستقرّة، والتي سرعان ما تتفكّك إلى عناصرها المكوّنة عند التسخين. أمّا الهالوجينات الأثقل من الفلور فتتفاعل بشكل فوري معه.

المركّبات الكيميائية

للفلور كيمياء غنية وطيف واسع من المركّبات الكيميائية سواء اللاعضوية أوالعضوية منها. يستطيع الفلور تشكيل مركّبات مع جميع العناصر عدا الهيليوم والنيون، وذلك سواء أكانت فلزّات أولافلزّات أوأشباه الفلزّات. تكون حالة الأكسدة للفلور (−1) في أغلب هذه المركّبات، والتي غالباً ما تكون مركّبات أيونية بسبب الألفة الإلكترونية المرتفعة للفلور. عندما يشكّل الفلور روابط تساهمية فإنّها تكون مستقطبة وأحادية.

مخطّط يظهر نقاط الغليان لبعض المركّبات وأثر وجود الروابط الهيدروجينية على ازدياد نقطة الغليان في كلّ من الماء وفلوريد الهيدروجين

مع الهيدروجين

يتحدّ الفلور مع الهيدروجين ليعطي فلوريد الهيدروجين، وهوغاز سام أكّال، تترابط جزيئاته مع بعضها على شكل تجمّعات عنقودية بسبب وجود الروابط الهيدروجينية بين الجزيئات، ممّا يجعل فلوريد الهيدروجين بهذه النقطة أشبه بالماء من كلوريد الهيدروجين. ينتمي فلويد الهيدروجين المسيّل والخالي من الماء إلى الأحماض الفائقة. يغلي فلوريد الهيدروجين عند درجة حرارة أعلى من هاليدات الهيدروجين الأثقل منه، وعلى العكس منها فإنّه يمتزج مع الماء بشكل كامل. عند التماس مع الماء يتميّه فلوريد الهيدروجين ليشكّل فلوريد الهيدروجين المائي المعروف باسم حمض الهيدروفلوريك. على العكس من باقي الأحماض الهيدروهاليدية والتي هي أحماض قوية، فإنّ حمض الهيدروفلوريك هوحمض ضعيف عند تراكيز منخفضة، إلّا أنّه مع ذلك مادّة أكّالة تخرّش الزجاج، وهي ظاهرة لا تستطيع الأحماض المتبقيّة حتى تعمله. يعدّ فلوريد الهيدروجين المركّب الكيميائي الأساسي للفلور، والذي منه يتم استحصال الفلور العنصري بالإضافة إلى باقي المركّبات الأخرى.

مع الفلزّات

تعدّ الفلوريدات أملاح حمض الهيدروفلوريك، وهي تتشكّل من أثره على الفلزّات المتنوعة. تكون فلوريدات الفلزّات القلوية مركّبات أيونية بلّورية ذات انحلالية عالية ولها نظام بلّوري مكعّب مشابه للكلوريدات الموافقة. تتميّز فلوريدات الفلزّات القلوية الترابية أنّها مركّبات أيونية قوية، لكنّها غير منحلة (ذوّابة) في الماء، باستثناء فلوريد البيريليوم، والذي له بعض الصفات التساهمية وبنية مماثلة لبنية ثنائي أكسيد السيليكون. تكون فلوريدات الفلزّات القلوية حاوية على ذرّة فلور واحدة (أحادية الفلور)، في حبن أنّ فلوريدات الفلزّات القلوية الترابية ثنائية الفلور. أمّا فلوريدات العناصر الأرضية النادرة وباقي الفلزّات الأخرى فهي غالباً ما تكون فلوريدات أيونية ثلاثية (حاوية على ثلاث ذرّات فلور).

تظهر الصفة التساهمية في الفلوريدات غالباً عندما تكون على شكل فلوريدات رباعية؛ ففي حين أنّ فلوريدات عناصر مثل الزركونيوم والهافنيوم، والكثير من الأكتينيدات، هي فلوريدات أيونية ذات نقطة انصهار مرتفعة، إلّا أنّه باللقاء تكون فلوريدات عناصر مثل التيتانيوم،والفاناديوم، ذات صفة بوليميرية، تنصهر أوتتفكّك عند درجات حرارة أقل من 350 °س. وعلى هذه الشاكلة تكون أيضاً الفلوريدات الخماسية والتي تتميّز بكونها على شكل بوليمرات خطّية أومعقّدات قليلة الوحدات. هناك ستّة عشر عنصراً لهم فلوريدات سداسية، وجميعها لها بنية جزيئية ثمانية السطوح، وتكون صلبة ما عدا سداسي فلوريد الموليبدنوم MoF6وسداسي فلوريد الرينيوم ReF6 السائلَين، بالإضافة إلى سداسي فلوريد التنغستن WF6 الغازي. هناك فلوريد سباعي واحد فقط اكتشف لحد الآن وهوسباعي فلوريد الرينيوم ReF7، وهوتعبير عن صلب له نقطة انصهار منخفضة وله بنية جزيئية هرمية مزدوجة خماسية السطوح. على العموم تتميّز الفلوريدات الحاوية على أكثر من ذرّة فلور بأنّها نشيطة كيميائياً.

بنى مختلفة لفلوريدات الفلزات
البنية المكعّبة للمركب الأيوني فلوريد الصوديوم سلسلة بوليميرية من خماسي فلوريد البزموت البنية الجزيئية لسباعي فلوريد الرينيوم

مع اللافلزّات وأشباه الفلزّات

تكون الفلوريدات الثنائية لأشباه الفلزّات واللافلزّات تعبير عن مركّبات تساهمية وذات تطايرية عالية، وتفاعلية كيميائية متفاوتة. تستطيع عناصر الدورة الثالثة واللافلزّات الثقيلة حتى تشكّل فلوريدات مفرطة في التكافؤ. لمركّب ثلاثي فلوريد البورون بنية مستوية ثلاثية، ولا تحقّق فيه ذرة البورون المركزية قاعدة الثمانية الإلكترونية، لذلك فإنّه يعدّ من أحماض لويس القادرة على الاتحاد مع قاعدة لويس مثل الأمونياك ليشكّل ناتج إضافة. من جهة أخرى،قد يكون رباعي فلوروالميثان على شكل رباعي سطوح وخامل كيميائياً، في حين أنّ باقي فلوريدات مجموعة الكربون مثل رباعي فلوريد السيليكون ورباعي فلوريد الجرمانيوم تكون أيضاً ذات بنية رباعية السطوح، لكنّها تتصرّف كأحماض لويس. أمّا مجموعة النتروجين فلها فلوريدات ثلاثية تتزايد تفاعليتها الكيميائية وقاعديتها مع ازدياد الكتلة الجزيئية، مع الفهم أنّ ثلاثي فلوريد النتروجين يقاوم الحلمهة وليس قاعدياً. تكون الفلوريدات الخماسية لكلّ من عناصر الفوسفور والزرنيخ والأنتيموان أكثر نشاطاً كيميائياً من نظيراتها الثلاثية، وخاصّة خماسي فلوريد الأنتيموان، والذي يعدّ أقوى أحماض لويس المعتدلة المعروفة.

لمجموعة عناصر الكالكوجين فلوريدات متنوّعة، فهناك فلوريدات ثنائية غير مستقرّة لكلّ من الأكسجين والكبريت والسيلينيوم، بالإضافة إلى الفلوريدات الرباعية والسداسية للكبريت والسيلينيوم والتيلوريوم. لمركّب سداسي فلوريد الكبريت ثباتية كبيرة وهوغاز خامل. على العكس من باقي الهالوجينات الأثقل فإنّه يوجد حمض أكسجيني واحد فقط للفلور، وهوحمض هيبوفلوروز HOF. تستطيع عناصر الهالوجينات الأخرى من الكلور والبروم واليود حتى تشكّل فلوريدات أحادية وثلاثية وخماسية، ووحده اليودقد يكون قادراً على تشكيل مركّب بين هالوجيني مع الفلور أعلى من ذلك، وهوسباعي فلوريد اليود. إنّ الكثير من هذه الفلوريدات المذكورة هي مصدر غني لذرّات الفلور في التفاعلات الكيميائية، مع الإشارة إلى أنّ العمليّات الصناعية التي تستخدم ثلاثي فلوريد الكلور تتطلّب أخذ الحيطة والوقاية كما هوالحال مع غاز الفلور.

صورة مأخوذة سنة 1962 لبلورات من رباعي فلوريد الزينون.

مع الغازات النبيلة

للغازات النبيلة عددٌ مكتمل من الإلكترونات في الغلاف الخارجي، بالتالي فهي لا تتفاعل مع باقي العناصر ولا تشكّل مركّبات كيميائية. بقيت هذه المعلومة سليمة على الإطلاق إلى سنة 1962 عندما قام نيل بارتلت بتحضير سداسي فلوروبلاتينات الزينون لأوّل مرة سنة 1962. تلا ذلك تحضير سلسلة من فلوريدات الغازات النبيلة مثل ثنائي فلوريد ورباعي فلوريد وسداسي فلوريد الزينون، بالإضافة إلى الكثير من أوكسي الفلوريدات المتعدّدة والتي عزلت منذئذ. يستطيع غاز الكريبتون حتى يشكّل مركّب ثنائي فلوريد؛ وكذلك الأمر بالنسبة لغاز الرادون الذي يشكّل ثنائي فلوريد أيضاً. تكون الفلوريدات الثنائية للغازات النبيلة الأخفّ غير مستقرّة للغاية، إذ يتّحد فلوريد الهيدروجين مع الأرغون تحت شروط قاسية جدّاً ليعطي فلوروهيدريد الأرغون. باللقاء، لا يمكن تشكيل مركّبات فلوريد من الهيليوم أوالنيون.

كيمياء الفلور العضوية

إنّ الرابطة الكيميائية فلور-كربون هي الأقوى بين الروابط في الكيمياء العضوية، ممّا يعطي ثباتية فائقة لمركّبات فلوروكربون العضوية. لا توجد مركّبات فلور عضوية في الطبيعة، وهي تصطنع كيميائياً فقط، حيث أدّت الأبحاث في هذا المجال إلى الكثير من التطبيقات التجارية؛ كما تتداخل مركّبات الفلور العضوية المتنوّعة في الكثير من مجالات أبحاث الكيمياء العضوية.

طبقتين غير متمازجتين من الماء الملوّن (في الأعلى) وطبقة أكثر كثافة من بيرفلوروالهيبتان C7F16 (في الأسفل) داخل إناء، يظهر فيه محاولة جميع من سمكة مضىية وسلطعون اختراق الحاجز بين الطبقتين.

يؤدّي استبدال ذرّات الهيدروجين في الألكانات بذرّات فلور إلى تغيّر في الكثير من خواصّها، ويزداد هذا التغيّر مع ازدياد عدد ذرّات الفلور المستبدلة، إذ تنخفض نقطتي الانصهار والغليان، وتزداد الكثافة، وتتناقص الانحلالية في المذيبات الهيدروكربونية، وتزداد الثباتية بشكل عام. تدعى المركّبات العضوية الحاوية على ذرّات كربون وفلور فقط في البنية الجزيئية باسم مركبات فلوروكربون (والتي تسمى أحياناً بيرفلوروكربون)، وهي مركّبات غير منحلّة (ذوّابة) في أغلب المذيبات العضوية، وتتفاعل فقط مع الصوديوم في الأمونياك السائل. يمكن لذرّات الفلور حتى تستبدل الهيدروجين في الكثير من المركّبات العضوية الأخرى غير الألكانات وذلك بوجود مجموعات وظيفية.قد يكون لهذه المركّبات الفلورية العضوية صفات مماثلة لمركّبات الفلوروكربون مثل الثباتية والدفوعية للماء، في حين أنّ المجموعة الوظيفية في البنية تكون مسؤولة عن التفاعلية، ممّا يمكّنها من الالتصاق بالسطوح واستخدامها كمؤثّرات سطحية (مواد فعّالة بالسطح)، والتي تدعى مؤثّرات السطح الفلورية، والتي تعمل على تخفيض التوتّر السطحي بشكل أكبر من نظيراتها ذات الأساس الهيدروكربوني.

يستحصل عادةً على أيونات الفلوريد في الكيمياء العضوية باستخدام مركب فلوريد رباعي بوتيل الأمونيوم (TBAF)، والذي يتميّز بأنّه ينحلّ في المذيبات العضوية، وبذلكقد يكون أيون الفلوريد حرّاً وغير معاقاً بالكاتيون المرافق (حينئذ يوصف باسم الفلوريد المجرّد)، ممّا يسمح باستخدام TBAF كمصدر للفلوريد في التفاعلات العضوية، كما يستخدم في إزالة مجموعة حماية سيليل الإيثر عن الكحولات.

البوليميرات
البنية الكيميائية للنافيون Nafion، وهوبوليمير فلوري يستخدم في خلايا الوقود وتطبيقات أخرى عديدة.

تبدي البوليميرات الحاوية على ذرّات فلور مستبدلة في بنيتها ثباتيّة عالية بالإضافة إلى نقاط انصهار أعلى من نظيراتها الهيدروكربونية. يعد متعدد رباعي فلوروالإيثيلين (PTFE) أبسط البوليميرات الفلورية وهومناظر لبوليمير متعدد الإيثيلين (بولي إيثين) الهيدروكربوني، وله الوحدة البنائية –CF2–، وهومقاوم للكيماويات ودرجات الحرارة، كما أنّه قاسي القولبة. هناك عدّة مشتقّات من PTFE ذات ثباتية أقل للحرارة وبالتالي هي سهلة القولبة، وتحضّر من إضافة مجموعات فلورية مثل مجموعات ثلاثي فلوروميثيل أوثلاثي فلوروميثوكسي، أوبإضافة مجموعة من فلور الإيثر منتهية بمجموعات حمض السلفونيك كما هوالحال في بنية نافيون. هناك بعض البوليميرات الفلورية التي تستبقي على ذرّات هيدروجين في بنيتها مثل ثنائي فلوريد متعدد الفينيليدين (PVDF) وفلوريد متعدد الفاينيل (PVF)، والتي تشابه في خواصها البوليميرات الفلورية كاملة الاستبدال.

الكشف عن الفلوريد

هناك عدّة تفاعلات كيميائية للكشف عن أيونات الفلوريد: إحداها يتم بوضع المادة الحاوية على الفلوريد في أنبوب اختبار زجاجي حاوٍ على حمض الكبريتيك المركّز:

ينتج عن التفاعل أبخرة فلوريد الهيدروجين، والتي تخرّش الزجاج، وفي نفس الوقت وبسبب التغيّر في السطح الملامس يفقد حمض الكبريتيك المقدرة على ترطيب الزجاج، وذلك دلالة على وجود الفلوريد في العيّنة.

طيف 19F NMR لمركب
1-برومو-5،4،3-ثلاثي فلوروالبنزين.

يمكن الكشف عن أيونات الفلوريد بطريقة أخرى تدعى قطرة الماء، حيث تعالج المادّة الحاوية على الفلوريد مع حمض السيليسيك وحمض الكبريتيك في وعاء مصنوع من الرصاص، فينتج عن ذلك تشكّل رباعي فلوريد السيليكون. بعد ذلك يوضع على الإناء الذي أجري فيه التفاعل ماصّة حاوية على قطرة من الماء، والتي يؤدّي تفاعل رياعي فلوريد السيليكون معها في تفاعل حلمهة إلى تشكّل ثنائي أكسيد السيليكون، الذي يتبلور بشكل مميّز على شكل إطار أبيض حول القطرة.

حالياً وباستخدام وسائل تحليلية حديثة مثل مطيافية الرنين المغناطيسي النووي (NMR) يمكن الكشف عن الفلور بواسطة 19F NMR بسهولة، إذ يتميّز بأنه عنصر أحادي النويدة.

الدور الحيوي

في الإنسان

علاج موضعي بالفلوريد لطفل أثناء حملة إغائة في إحدى الدول الاستوائية.

لا يعد الفلور من المغذّيات الأساسية للإنسان وللثديّيات الأخرى، إذ تكفي كمّيّات ضئيلة من أجل قوّة العظام، على الرغم من الشكوك التي تحوم حول تلك النقطة. تؤدّي حاجة الجسم الضئيلة من الفلور وتوفّر الكثير من المصادر الطبيعية للفلور إلى قلّة احتمال الإصابة بسقم عوز الفلور، ولا يمكن حتى تقع إلا لمن يتّبع حمية غذائية غير طبيعية المصدر. يوجد في جسم إنسان (70 كغ وسطياً) حواليخمسة غ من أيون الفلوريد، وهوغير متجانس التوزيع، إذ يهجرّز في العظام والأسنان. يقي الفلوريد من تسوس الأسنان، كما يعمل على تقسية مينا الأسنان، حيث تتمّ هذه العملية وفق الأبحاث من خلال إقحام الفلوريد بدل أيونات الهيدروكسيد في هيدروكسيل أباتيت ليتشكّل فلورأباتيت، والذي يتميّز بضعف انحلاليته، بالتاليقد يكون ثابتاً تجاه اللعاب، فيلعب دوراً في تدعيم الأسنان، وخاصّة أنّ الأباتيت المنحلّ سيترسّب مرّة أخرى بوجود الفلور؛ إلّا أنّ بعض الأبحاث الأخرى دحضت هذه النظرية؛ ولكن مع التأكيد على دور الفلوريد في دعم نموالمينا. بالإضافة إلى ذلك فإنّ الفلوريد يلعب دوراً حاجباً لنوعية معيّنة من الإنزيمات، ممّا يسهم في إعاقة تحلل السكر الذي تسهم فيه أنواع البكتريا. يمكن الحصول على الفلوريد من مصادر طبيعية عادةً إمّا عن طريق ماء الشرب (في بعض البلدان) أومن مصادر غذائية.

باللقاء فإنّه عندما يتعرّض الأطفال في فترة نموالأسنان إلى كمّيّات فائضة من الفلوريد يمكن حدوث حالة من تسمم الأسنان بالفلور. في هذه الإصابة تظهر نقط أوبقع ملوّنة على سطح الأسنان، كما يصبح السنّ أكثر هشاشةً وأقلّ مقاومة. يتفاوت الحدّ الأعظمي من الفلوريد الموصى به للإنسان يومياً حسب العمر؛ فبالنسبة للرضّع إلى عمر ستة أشهر يبلغ 0.7 مغ؛ ومن 7-17 شهر 0.9 مغ؛ وللأطفال حتى عمر ثلاثة سنوات 1.3 مغ؛ أمّا الأطفال من أربع إلى ثمان سنوات فيكون الحد الأعظمي لهم هو2.2 مغ؛ وبعد تمام نموالأسنان تكون حاجة الإنسان الأعظمية من الفلوريدعشرة مغ في اليوم.

يعدّ نبات الجفبلار السنمي أوورق السم السنمي (الاسم الفهمي:Dichapetalum cymosum) من الكائنات الحيّة القليلة التي تستطيع اصطناع الفلور العضوي.

تعمد بعض الدول إلى إضافة أيون الفلوريد إلى ماء الشرب من أجل مكافحة تسوّس الأسنان، كما هوالحال في الأمريكيتين، باللقاء فإنّ ألمانيا لا تسمح بفلورة الماء، أمّا في سويسرا فكانت مدينة بازل سنة 2000 آخر مدينة هناك تقوم بإضافة الفلوريد إلى مياه الشرب. لا يوجد تأكيدات إلى الآن حول ضرورة إضافة الفلوريد إلى ماء الشرب، ولا يزال محطّ خلاف بين جهات داعمة ورافضة للفكرة. فالجهات الداعمة تشير إلى حتى فلورة الماء ساهمت في تقليص نخر الأسنان عند الأطفال، وأن الأثر السلبي الظاهر هوتسمم الأسنان بالفلور، إلّا أنّ أطراف أخرى تعارض الفكرة من دوافع مادّية كالسلامة وأخرى معنوية أخلاقية. خاصّة أنّ الفائدة من فلورة الماء تقلّصت مع انتشار مستحضرات العناية بالأسنان من معاجين وغسول فم ورغوات تنظيف حاوية على مصدر فلوري مثل أحادي فلوروفوسفات الصوديوم في هجريبها.

في الكائنات الأخرى

عثر على آثار من الفلور العضوي الطبيعي في بعض النباتات، ولكن ليس في الحيوانات. أكثر مركّبات الفلور العضوية الطبيعية انتشاراً هوفلوروأسيتات الصوديوم، والذي يستخدم كأسلوب دفاع ضد العواشب من قبل ما لا يقل عن 40 نبتة في أفريقيا وأستراليا والبرازيل. تشكّل الأحماض الدهنية ذات النهايات المفلورة، ومركّبات مثل فلوروأسيتون و2-فلوروسيترات نماذج أخرى عن مركبات فلور عضوية طبيعية. كما عثر على إنزيم مهمته ربط الفلور بالكربون - - وذلك في أحد أنواع البكتريا سنة 2002.

الأثر البيئي

حمض بيرفلوروأوكتان السلفونيك: هي مادّة كانت تستخدم كمكوّن لمستحضرات الوقاية من البقع الدهنية حتى سنة 2000 عندما منع من الاستخدام.

تتميّز مركّبات الفلور العضوية بأنّها مقاومة للتحلّل الحيوي بسبب قوّة الرابطة الكيميائية بين الكربون والفلور، لذلك تعدّ مركبات الفلوروكربون المتنوعة، مثل أحماض بيرفلوروالألكيل (PFAAs) ذات الانحلالية الضئيلة في الماء بسبب المجموعات الوظيفية الحمضية، من الملوّثات المستدامة للبيئة. على هذا الأساس شرعت الأبحاث باستقصاء المركّبات العضوية الفلورية المتنوعة مثل حمض بيرفلوروأوكتان السلفونيك (PFOS) وحمض بيرفلوروالأوكتانويك (PFOA). أفادت دراسة أجريت سنة 2013 بوجود علاقة بين مستويات PFAA في المياه الجوفية والتربة والنشاط البشري، كما وجدت علاقة بين المستويات المرتفعة لكل من PFOS وPFOA في تلك الدراسة. ترتبط مركبات PFAAs في جسم الإنسان بالبروتينات مثل الألبومين في المصل، وتهجرز في الكبد والدم قبل حتى تطرح عبر الكلى خارج الجسم، ولكن مدّة المكث تتفاوت حسب الأجسام، ويمكن حتى تصل إلى سنوات عند البشر. يؤدّي التعرّض إلى مستويات مرتفعة من PFOS وPFOA إلى السرطان وحدوث وفيات عند فئران التجارب الوليدة حديثاً، ولا تزال الأبحاث مستمرّة لفهم المستويات الحرجة بالنسبة للبشر، خاصّة حتى مستويات التعرّض الحالية لم تُبدِ أثراً لحد الآن.

إسقاط مستمر لصور من ناسا يتنبّأ بمصير طبقة الأوزون فوق أمريكا الشمالية طالما عدم التوقيع على اتفاقية مونتريال.

وضعت اتفاقية مونتريال الموقّعة سنة 1987 ضوابط صارمة تجاه استخدام مركبات كلوروفلوروكربون (CFCs) نظراً لأثرها المخرّب الذي يسبّب نضوب الأوزون. تعدّ هذه المركّبات ثابتة ومقاومة للتحلّل حتّى تصل إلى ارتفاعات عالية في طبقات الجوّ، ثمّ تتفكّك حينها لتعطي جذور حرة من ذرّات الكلور والتي تهاجم جزيئات الأوزون. تشير بعض الآراء إلى أنّه حتّى بعد الحظر سيتطلّب الأمر عدّة أجيال حتى تعود طبقة الأوزون إلى الوضع السابق قبل التلوّث الحاصل بسبب مركّبات كلوروفلوروكربون، التي تستخدم مركبات هيدروكلوروفلوروكربون كبديل عنها حالياً(HCFCs)، والتي بدورها ستستبدل مستقبلاً (2030–2040) بشكل تام بمركّبات هيدروفلوروكربون (HFCs) الخالية من الكلور وعديمة الضرر بالنسبة للأوزون. باللقاء فإنّ غازات فلوروكربون هي غازات دفيئة ذات احتمالية حدوث احترار عالمي (GWPs) تتراوح بين 100 و10,000، مع الفهم أنّ سداسي فلوريد الكبريت له قيمة GWP حوالي 20,000. من هذه المركّبات 3،3،3،2-رباعي فلوروالبروبين (HFO-1234yf)، والذي له قيمة GWP تبلغ أربعة بالمقارنة مع 1430 لمركّب 2،1،1،1-رباعي فلوروالإيثان (HFC-134a)، وهي مادّة قياسية لمواد التثليج حاليّاً.

الاستخدامات

تقوم عملية التعويم الزبدي بفصل الفلوريت الجاري تعدينه بنسبة متساوية تقريباً إلى صنفين رئيسيين لهما درجات تعدينية متفاوتة: الأول يدعى ميتسبار metspar وهوذونقاوة تتراوح بين 60-85 %، ويستخدم تقريباً بالكامل في صهر الحديد وإنتاج الصلب؛ أمّا الثاني فهوأسيدبار acidspar والذي له نقاوة تزيد عن 97%، والذي يحوّل بشكل رئيسي إلى فلوريد الهيدروجين كمركّب وسطي صناعي.

فلوريت فلورأباتيت فلوريد الهيدروجين صهر المعادن سداسي فلوروألومينات صوديوم تنظيف بالحمض حمض فلوروالسيليسيك تكسير (كيمياء) كلوروفلوروكربون تيفلون فلورة الماء تخصيب اليورانيوم سداسي فلوريد الكبريت فلوريد التنغستن السداسي
مخطط تفاعلي يوضّح استخدامات الفلور الصناعية.

التطبيقات الصناعية

ينتج ما لا يقل عن 17000 طن متري من الفلور سنوياً، وهويكلّف 5-8 دولار أمريكي لكل كيلوغرام عند إنتاجه على شكل سداسي فلوريد اليورانيوم أوالكبريت، ولكن الثمن يتضاعف عند الحصول عليه بشكل عنصري نظراً للتحدّيات المرافقة أثناء التعامل معه نظراً لنشاطه الكيميائي الكبير، والكثير من العمليّات التي تتطلّب وجود الفلور العنصري تقوم بتوليده في المسقط حسب مبدأ التكامل الرأسي.

غاز الفلور

محولات SF6 في محطّة قطار روسية.

إنّ التطبيق الأساسي لغاز الفلور هواستخدامه من أجل تحضير سداسي فلوريد اليورانيوم UF6 المستخدم في دورة الوقود النووي، باستهلاك يصل إلى 7000 طن سنوياً. يستخدم الفلور العنصري في فلورة رباعي فلوريد اليورانيوم UF4، والذي يستحصل بدوره من ثنائي أكسيد اليورانيوم UO2 وحمض هيدروفلوريك. بما أنّ الفلور عنصر أحادي النظير، بالتالي أيّ فرق في الكتلة بين جزيئات UF6 الغازية هونتيجة لوجود 235U أو238U؛ ممّا يمكّن من تخصيب اليورانيوم عن طريق الانتشار الغازي أوباستخدام طاردة مركزية غازية. يستهلك حوالي 6000 طن متري سنوياً من غاز الفلور في إنتاج سداسي فلوريد الكبريت SF6 الخامل والعازل كهربائياً والمستخدم في المحوّلات عالية الجهد وفي قواطع التيار، ممّا يجنّب الحاجة إلى مركبات ثنائي الفينيل متعدد الكلور الخطرة والتي يترافق تطبيقها مع وجود أجهزة مليئة بالوقود. تستخدم النسبة المتبقية من غاز الفلور في إنتاج بعض الفلوريدات العضوية التي لها تطبيقات مختلفة، ولكنّ تمنع الفعالية العالية له دون استخدامه بشكل مباشر، لذلك يحوّل في البداية إلى مركّبات بين هالوجينية مثل ClF3 أوBrF3 أوIF5، أمّا المستحضرات الصيدلانية الفلورية فيستخدم فيها رباعي فلوريد الكبريت كبديل.

الفلوريدات اللاعضوية

تستخدم أملاح الفلوريد بشكل أساسي في صهر المعادن وصناعة الصلب والفولاذ، حيث يضاف حوالي ثلاثة كغ من ميتسبار إلى كلّ طن متري من الفولاذ (الصلب)، حيث تعمل أيونات الفلوريد على تخفيض نقطة الانصهار واللزوجة. كما يلعب الفلور دوراً آخر في هذه الصناعة، إذ يؤخذ الشكل النقي وهوأسيدبار ويفاعل مع حمض الكبريتيك لتحضير حمض هيدروفلوريك، والذي يستخدم من أجل المعالجة الحمضية لتنظيف سطوح الفولاذ، كما يستخدم هذا الحمض أيضاً من أجل تنميش الزجاج وله استخدام في عمليات تكسير الألكانات. يستهلك حوالي الثلث من فلوريد الهيدروجين في تحضير مركبي الكريوليت وثلاثي فلوريد الألومنيوم واللذان يستخدمان كصهيرة في عملية هول-هيرولاستخراج الألومنيوم، والتي يحتاج فيها لإنتاج طن واحد من الألومنيوم إلى حوالي 23 كغ من تلك المواد. يستخدم فلوريد الهيدروجين أيضاً من أجل تحضير أملاح فلوروسيليكات، مثل سداسي فلوروسيليكات الصوديوم Na2SiF6، والمستخدم في فلورة المياه، وكذلك كمركّب وسطي أثناء تحضير الكريوليت ورباعي فلوريد السيليكون.

من الفلوريدات اللاعضوية المهمّة أيضاً التي لها تطبيقات صناعية جميع من فلوريدات الكوبالت والنيكل والأمونيوم. كذلك الأمر بالنسبة لفلوريدات الرينيوم والتنغستن التي تستخدم في الترسيب الكيميائي للبخار؛وثلاثي فلوريد النتروجين المستخدم في تنظيف الأجهزة.

مركبات الفلور العضوية

تستهلك الفلوريدات العضوية أكثر من 20% من خامة الفلوريت وأكثر من 40% من حمض هيدروفلوريك حيث يمضى الاستهلاك الأكبر على مواد التثليج، بالإضافة إلى الطلب المتزايد من البوليميرات الفلورية. تعدّ المواد الفعّالة بالسطح الفلورية من المنتجات الثانوية لصناعة الفلور الكيمائية، إلّا أنّها تعطي ما مقداره بليون دولار أمريكي كعائدات سنوية. هناك استخدامات أخرى متفرّقة، إذ يستخدم رباعي فلوروالميثان في التنميش بواسطة البلازما، أمّا بيرفلوروالبوتان (C4F10) فيستخدم كمادّة في إطفاء الحرائق.

نظراً للخطر المرافق لتفاعلات فلور-هيدروكربون المباشرة فوق -150 °س، فإنّ إنتاج مركّبات فلوروكربون الصناعية يتمّ بشكل غير مباشر عن طريق تفاعلات تبادل هالوجينية، أوباستخدام الفلورة الكهروكيميائية، التي تخضع فيها الهيدروكربونات إلى التحليل الكهربائي في فلوريد الهيدروجين، ومن ثمّ المعالجة عن طريق عملية فاولر بمادّة فلورية صلبة مثل فلوريد الكوبالت الثلاثي.

مواد التثليج

تدعى مواد التثليج الهالوجينية باسم فريونات، وهي تميّز بحرف R يوضع بعده أرقام تشير إلى عدد ذرّات الفلور والكلور والكربون والهيدروجين الموجودة في البنية. كانت مركبات كلوروفلوروكربون (CFCs) مثل ثلاثي كلوروفلوروالميثان (R-11) وثنائي كلوروثنائي فلوروالميثان (R-12) و2،1-ثنائي كلورورباعي فلوروالإيثان (R-114) مسيطرة على صناعة الفلور الكيميائية للطلب الكبير عليها في صناعة البرّادات وأجهزة التكييف وكمواد ترذيذ، وبلغت هذه الصناعة ذروتها في ثمانينات القرن العشرين، قبل حتى تضمحلّ بسبب الحظر العالمي المطبّق بعد اتفاقية مونتريال. كبديل أكثر أماناً يستخدم حالياً مركبات هيدروكلوروفلوروكربون (HCFCs) وهيدروفلوروكربون (HFCs)، والتي يتطلّب اصطناعها استهلاك حوالي 90% من الفلور في الصناعات الكيميائية العضوية. من مركبات HCFCs المهمّة مركب كلوروثنائي فلوروالميثان (R-22) و1،1-ثنائي كلورو-1-فلوروالإيثان (R-141b). أما بالنسبة لمركّبات HFC فأشهرها 2،1،1،1-رباعي فلوروالإيثان (R-134a)، بالإضافة إلى 3،3،3،2-رباعي فلوروالبروبين (HFO-1234yf) الذي له خواص بيئية جيّدة نسبياً.

البوليميرات
بترة من قماش معالجة بمواد فلورية فعالة بالسطح والتي تكون كارهة للماء عادةً.

أنتج حوالي 180 ألف طن متري من البوليميرات الفلورية بين عامي 2006 و2007، والتي جلبت عائدات فاقت 3.5 بليون دولار سنوياً. قُدّرت عائدات السوق العالمي بحواليستة بليون دولار سنة 2011، ويتوقّع لها حتى تنموبنسبة 6.5% سنوياً حتى سنة 2016.

لا يمكن الحصول على البوليميرات الفلورية إلّا عن طريق بلمرة الجذور الحرة. يمثّل متعدد رباعي فلوروالإيثيلين (PTFE)، أوكما يعهد بالاسم التجاري تيفلون Teflon التابع لشركة دوبونت، ما قيمته حوالي 60–80% وزناً من الإنتاج العالمي للبوليميرات الفلورية. إذا أكبر تطبيق للتيفلون هوفي العزل الكهربائي، كما يستخدم كمادة تبطين خاملة في الصناعات الكيميائية عندما يتطلّب الأمر مقاومة للتآكل وذلك للمفاعلات أوتمديدات الأنابيب. من التطبيقات الأخرى استخدامه كطبقة مانعة للالتصاق في أواني الطبخ، وكمادّة دافعة للماء في أقمشة غور-تكس Gore-Tex المستخدمة في صناعة الواقيات المطرية ومعدات الوقاية الشخصية، بالإضافة إلى تطبيقات ميكانيكية أخرى. أجريت تحويرات عديدة على هذا البوليمير بحيث أصبح من الممكن الحصول على ميّزات جديدة، فمثلاً استخدمت طبقتين رقيقتين من اثنين من البوليميرات الفلورية محل الزجاج في بعض الخلايا الشمسية.

تستخدم الوحدات الأيونية (أيونومير) المفلورة والثابتة كيميائياً في صناعة أغشية الخلايا الكهركيميائية وأشهرها مادة النافيون Nafion، والتي طوّرت في ستّينات القرن العشرين، واستخدمت بادئ الأمر في صناعة خلايا الوقود في المركّبات الفضائية، ومن ثم حلّت محلّ خلايا عملية الكلور القلوي ذات الأساس المبني على الزئبق. تدخل مركّبات الفلور العضوية أيضاً في صناعة المطاط الاصطناعي والبوليميرات المرنة مثل منتجات Viton، والتي هي مزيج من بوليميرات فلورية متشابكة تستخدم في صناعة الحلقات المستديرة.

معالجة السطوح

المواد الفلورية الفعّالة بالسطح هي مواد عضوية فلورية صغيرة ذات فدرة على دفع الماء والبقع، ومن أشهر من سوّقها شركة ثري إم الأمريكية باسم المنتج Scotchgard، والذي حقّق مبيعات فاقت 300 مليون دولار سنة 2000. بالإضافة إلى ذلك، يمكن معالجة سطوح اللدائن بالفلور ممّا يعطيها طاقة سطح أعلى، وخصوصاً بالنسبة اللدائن المدعّمة بألياف والتي يعطيها تماسكاً أكبر، ويقلّل من الاحتكاك؛ كما تزيد فلورة السطوح من الانتقائية في تقنية الأغشية.

الكيماويات الزراعية

إنّ حوالي 30% من الكيماويات الزراعية تحوي على عنصر الفلور في هجريبها، وأغلبها مبيدات للأعشاب وللفطريات، مع وجود قلّة من الهرمونات النباتية. إنّ إقحام مجموعات الفلور العضوية في هذه الكيماويات يؤدّي إلى إطالة مدة المكث الحيوي، كما أنّها تتميّز بقدرتها على اختراق الأغشية وعلى تغيير التعرّف الجزيئي. من الأمثلة الشهيرة عليها مستحضر تريفلورالين المبيد للأعشاب الضارّة، والذي ينتشر استخدامه في الولايات المتّحدة، ولكنّه محظور في عدّة دول أوروبية، إذ يشكّ بأنّه مادّة مسرطنة. يعدّ فلوروأسيتات الصوديوم (1080) مادّة سامّة للثدييات، حيث يعمل على الإخلال باستقلاب الخلايا بدخوله محلّ الأسيتات في دورة حمض الستريك. اصطنع هذا المركب لأوّل مرّة في أواخر القرن التاسع عشر، واستخدم كمبيد حشري في أوائل القرن العشرين، لكنّه ممنوع من الاستخدام في جميع من الولايات المتّحدة وأوروبا،. وتعد نيوزيلندا أكبر مستهلك حالي لهذه المادّة، إذ تستخدمه لحماية طيور الكيوي من حيوانات بوسوم كث الذيل الأسترالية.

التطبيقات الطبية

العقاقير الصيدلانية

كبسولات دوائية لعقار فلوكسيتين.

يقدّر تقريباً أنّ حوالي 20% من الأدوية الصيدلانية الحديثة تحوي الفلور في هجريبها. يتم فلورة العقاقير من أجل تأخير تثبيطها ومن أجل تطويل مدّة الجرعات ما أمكن، حيث أنّ رابطة كربون-فلور قويّة جدّاً ومستقرّة. تزيد عملية الفلورة أيضاً من جعل العقار محبّاً للدهن، لأنّ الرابطة كارهة للماء بشكل أكبر من الرابطة بين الكربون والهيدروجين، ممّا يساعد في اختراق غشاء الخلية، وبالتالي يصبح التوافر الحيوي ممكناً.

من الأمثلة على هذه الأدوية عقار أتورفاستاتين المخفّض للكوليسترول، والذي حقّق مبيعه عائدات كبيرة قبل حتى تنتهي حقوق ملكية اصطناعه ويصبح بالإمكان إنتاج أدوية مكافئة له؛ ومن الأمثلة الأخرى أيضاً عقار فلوتيكازون، وكذلك عقار فلوكسيتين المستخدم كمضاد اكتئاب والذي تميّز بخلوّه من الآثار الجانبية التي كانت تسبّبها أدوية مضادات الاكتئاب ثلاثية الحلقات في السابق. في الوقت الراهن هناك عدّة عقاقير فلورية مضادّة للاكتئاب بما فيها مثبطات استرداد السيروتونين الانتقائية: سيتالوبرام ومصاوغه إسيتالوبرام وفلوفوكسامين وباروكسيتين. تعدّ مركّبات الكينولون من المضادّات الحيوية واسعة الطيف، والتي غالباً ما يتمّ فلورتها من أجل تحسين أثرها، ومن أمثلتها سيبروفلوكساسين وليفوفلوكساسين.

للفلور أيضاً وجوده في الستيرويدات: فعقار فلودروكورتيزون تعبير عن مينيرالوكورتيكويد رافع لضغط الدم، وتريامسينولون وديكساميتازون تعبير عن ستيرويدات غلوكوكورتيكويد. إنّ أغلب المواد المخدّرة المستنشقة طبّياً تكون مفلورة بشكل كبير، ومن أمثلتها هالوثان، بالإضافة إلى الإيثرات المفلورة مثل سيفوفلوران وديسفلوران، والتي هي أفضل من الهالوثان، وهي تقريباً غير منحلّة في الدمّ، ممّا يتيح فترة إيقاظ أسرع.

التصوير المبتري PET

تصوير مبتري لإنسان وإظهار الأعضاء بواسطة 18F كمادّة اقتفاء.

يستخدم الفلور-18 في هجريب مواد الاقتفاء المشعة من أجل التصوير المبتري بالإصدار البوزيتروني PET، إذ أنّ عمر النصف لهذا النظير يبلغ حوالي ساعتين، وهي مدّة كافية لإجراء عملية التصوير وتحضيراتها. أشهر مواد الاقتفاء المشعة الفلورية هومركب فلوروديوكسي غلوكوز، والذي يعطى عبر حقنة وريدية، حيث يمتصّ من أعضاء الجسم وأنسجته المتطلّبة للسكر مثل الدماغ والخلايا في مكان وجود الأورام الخبيثة؛ وبعد الكشف يمكن بعد ذلك استعمال التصوير المبتري المحوسب من أجل تصوير أكثر دقّة وتفصيلاً.

حمل الأكسجين

يمكن لمركّبات فلوروكربون السائلة حتى تحمل كمّيّات كبيرة من الأكسجين أوثنائي أكسيد الكربون بشكل أكبر من الدم، ولفتت هذه الخاصّية الانتباه إلى إمكانية استخدام نظرية في تنفس السائل. بما أنّ مركّبات فلوروكريون لا تمتزج مع الماء، فينبغي لذلك إضافة مستحلبات لاستخدامها كبديل للدمّ. كمثال على هذه المواد الحاملة للأكسجين مركّب Oxycyte، إلّا أنّ هذه المواد محظورة الاستخدام في الأنشطة الرياضية إذ تعدّ ضمن المنشطات الممنوعة، وقد جرى تحقيق سنة 1998 على أحد الدرّاجين الذي قارب الوفاة بسبب تعاطي مثل هذه المواد غير المشروعة.

من التطبيقات للمواد الفلورية حاملة الأكسجين استخدامها في الحالات الطارئة لمساعدة المصابين بحروق شديدة ولمساعدة الأطفال الخدّج الذين يعانون من مشاكل في التنفّس بسبب عجز الرئتين عن أداء وظيفتها، إلاّ أنّ مثل هذه المواد لم يصل بعد إلى فترة التجارب السريرية لأنّ النتائج لم تكن أفضل من وسائل العلاج العادية.

احتياطات الأمان

إنّ الفلور العنصري عالي السمّية بالنسبة للكائنات الحيّة، ويبدأ تأثيره على الإنسان من تراكيز أدنى من تأثير سيانيد الهيدروجين وتقدّر بحدود 50 جزء في المليون (ppm)، وهوقريب من التراكيز المؤثّرة لغاز الكلور السامّ أيضاً. تحدث تهيّجات خطيرة للعينين وللجهاز التنفّسي بالإضافة إلى أضرار في الكبد والكليتين عند تراكيز أعلى من 25 جزء في المليون (ppm)، والتي تعدّ قيمة هجريز الفلور ذات الخطورة الفورية للحياة أوالصحة (IDLH). تتأذّى العينان والأنف بشكل كبير عند تراكيز تصل إلى 100 ppm، أمّا استنشاق غاز الفلور عند هجريز 1000 ppm فسوف يسبب الموت خلال دقائق معدودة، وذلك بالمقارنة مع 270 ppm لسيانيد الهيدروجين.

حروق كيميائية خطيرة وشديدة بسبب حمض هيدروفلوريك.

يؤدّي التماس مع حمض هيدروفلوريك HF إلى حروق كيميائية شديدة، وذلك بشكل أكبر من الأحماض القويّة مثل حمض الكبريتيك على الرغم من ضعفه، حيث يبقى معتدلاً في المحاليل المائية، وبالتالي يخترق الأنسجة بشكل أسرع، سواء عبر الاستنشاق أوالابتلاع أوالتماس عبر الجلد، حيث يتفاعل مع المغنسيوم أوالكالسيوم في الدم مسبّباً حدوث نقص كالسيوم الدم ووفاة محتملة بسبب اضطراب النظم القلبي. يؤدّي تشكّل فلوريد الكالسيوم غير المنحل إلى آلام مبرّحة، ويمكن حتى تسبّب الحروق الأكبر من 160 سم2 سمّيّة خطيرة للأعضاء. بالإضافة إلى ذلك، يستطيع HF حتى يشكّل روابط هيدروجينية قويّة، وبالتالي بإمكانه تغيير البنية الرابعية للبروتينات. طالما تعرّض الجلد إلى HF فإنّه يمكن تخفيف الضرر بشطفه بتيّار من الماء لمدة 10-15 دقيقة وبالتخلّص من الملابس الملوّثة. يمكن إضافة غلوكونات الكالسيوم بعد ذلك من أجل توفير أيونات الكالسيوم كي يتاح لها الارتباط مع الفلوريد، وذلك على شكل جل 2.5% أومحاليل معالجة خاصّة. في أسوأ الأحوال قد يتطلّب الأمر بتر العضوالمصاب.

تعدّ الفلوريدات المنحلة متوسّطة السمّية، إذ يتراوح المجال بين 32-64 مغ أيون فلوريد لكل كيلوغرام من كتلة الجسم، وهي تمثّل الجرعة القاتلة بالنسبة للبالغين. إنّ مقدار الخُمس من هذه الجرعة القاتلة يمكن حتى يسبب الكثير من الآثار السلبية على صحة الجسم، كما أنّ التعرّض المزمن لجرعات زائدة يمكن حتى يؤدّي إلى حدوث حالة تسمم هيكلي بالفلور، والتي تصيب عدداً كبيراً من الأشخاص في آسيا وأفريقيا. توضع حدود التعرّض للفلوريد بإجراء فحص للبول وذلك لفهم قدرة الجسم على التخلّص من أيونات الفلوريد. إنّ أغلب حالات التسمم بالفلوريد المسجلّة تاريخياً كانت بسبب الابتلاع غير المقصود للمبيدات الحشرية الحاوية على فلوريدات غير عضوية. وقد سجّلت بعض الحوادث المتفرقة بسبب ابتلاع معاجين الأسنان الحاوية على الفلوريد، أوبسبب عطل فني في أجهزة فلورة المياه مثلما وقع في ألاسكا، والذي أودى بحياة إنسان وأصاب 300 آخرين. تنصح مراكز مكافحة الأمراض واتقائها الأمريكية بمصاحبة الأطفال دون السادسة أثناء تنظيفهم لأسنانهم كي لا يبتلعوا معاجين الأسنان. وقد سجّلت دراسة محلّية في الولايات المتحدة حدوث 87 حالة تسمّم بالفلوريد على مدار سنة كاملة، معظمها دون أعراض، و30% منها كانت مترافقة بآلام في المعدة. وقد بيّنت دراسة ضمت تام الولايات أنّ 80% من الحالات كانت لأطفال دون السادسة، ولم يكن هناك إلا بضعة حالات خطيرة فقط.

المراجع

  1. Compressed Gas Association، صفحة 365.
  2. Haynes 2011، صفحة 4.121.
  3. Jaccaud et al. 2000، صفحة 382.
  4. Jaccaud et al. 2000، صفحة 381.
  5. Dean 1999، صفحة 4.6.
  6. ^ Dean 1999، صفحة 4.35.
  7. ^ Matsui 2006، صفحة 257.
  8. ^ Mackay, Mackay & Henderson 2002، صفحة 72.
  9. ^ Cheng et al. 1999.
  10. ^ Yaws & Braker 2001، صفحة 385.
  11. ^ Greenwood & Earnshaw 1998، صفحة 790.
  12. ^ Senning 2007، صفحة 149. نسخة محفوظة 13 أبريل 2020 على مسقط واي باك مشين.
  13. Norwood & Fohs 1907، صفحة 52. نسخة محفوظةعشرة أبريل 2016 على مسقط واي باك مشين.
  14. ^ Greenwood & Earnshaw 1998، صفحة 109.
  15. ^ Agricola, Hoover & Hoover 1912، preface, pp. 380–381. نسخة محفوظة 1 فبراير 2017 على مسقط واي باك مشين.
  16. Weeks 1932.
  17. ^ Partington 1923.
  18. ^ Marggraf 1770.
  19. Kirsch 2004، صفحات 3–10.
  20. ^ Scheele 1771.
  21. ^ Ampère 1816.
  22. ^ Davy 1813، صفحة 278.
  23. ^ Banks 1986، صفحة 11.
  24. Storer 1864، صفحات 278–280. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  25. Toon 2011.
  26. Asimov 1966، صفحة 162.
  27. ^ Greenwood & Earnshaw 1998، صفحات 789–791.
  28. ^ Moissan 1886.
  29. ^ Viel & Goldwhite 1993، صفحة 35. نسخة محفوظة 22 مايو2019 على مسقط واي باك مشين.
  30. Okazoe 2009.
  31. Hounshell & Smith 1988، صفحات 156–157.
  32. ^ DuPont 2013a.
  33. ^ Meyer 1977، صفحة 111.
  34. ^ E. Karr: Elemental fluorine. I. G. Farbenindustrie Leverkusen. In: FIAT final report 838, 15. Juni 1946.
  35. ^ Kirsch 2004، صفحات 60–66. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  36. ^ Cameron 1973.
  37. Croswell 2003.
  38. ^ Clayton 2003، صفحات 101–104. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  39. ^ Renda et al. 2004.
  40. Jaccaud et al. 2000، صفحة 384.
  41. ^ Schulze-Makuch & Irwin 2008، صفحة 121.
  42. ^ Haxel, Hedrick & Orris 2005.
  43. Greenwood & Earnshaw 1998، صفحة 795.
  44. Villalba, Ayres & Schroder 2008.
  45. ^ Kelly & Miller 2005.
  46. ^ Lusty et al. 2008.
  47. Gribble 2002.
  48. ^ Richter, Hahn & Fuchs 2001، صفحة 3.
  49. Schmedt, Mangstl & Kraus 2012.
  50. ^ Miller 2003b.
  51. ^ PRWeb 2012.
  52. ^ Bombourg 2012.
  53. ^ TMR 2013.
  54. ^ Jaccaud et al. 2000، صفحة 386.
  55. ^ Jaccaud et al. 2000، صفحات 384–285.
  56. ^ Greenwood & Earnshaw 1998، صفحات 796–797.
  57. ^ Jaccaud et al. 2000، صفحات 384–385.
  58. ^ Jaccaud et al. 2000، صفحات 390–391.
  59. ^ Shriver & Atkins 2010، صفحة 427.
  60. ^ Christe 1986.
  61. ^ Christe Research Group n.d.
  62. ^ Carey 2008، صفحة 173.
  63. ^ National Nuclear Data Center NuDat 2.1، Fluorine-19. نسخة محفوظة 22 مايو2019 على مسقط واي باك مشين.
  64. ^ Vigoureux 1961.
  65. ^ Meusinger, Chippendale & Fairhurst 2012، صفحات 752, 754.
  66. National Nuclear Data Center NuDat 2.1.
  67. ^ Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003), "The NUBASE evaluation of nuclear and decay properties" (PDF), Nucl. Phys. A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001, مؤرشف من الأصل (PDF) في 27 أكتوبر 2016 CS1 maint: ref=harv (link)
  68. ^ Burdon, Emson & Edwards 1987.
  69. ^ Lide 2004، صفحة 4.12.
  70. Dean 1999، صفحة 523.
  71. ^ J. Burdon, B. Emson, A. J. Edwards: Is fluorine gas really yellow? in: J. Fluorine Chem 34, 1987, S. 471–474.
  72. ^ A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 214.
  73. ^ T. Jordan, W. Streib, W. Lipscomb: Single Crystal X-Ray Diffraction Study of β-Fluorine. In: Journal of technical physics 41, Nr. 3, 1964, S. 760–764.
  74. ^ Bürgi 2000.
  75. ^ Müller 2009.
  76. Young 1975، صفحة 10.
  77. Barrett, Meyer & Wasserman 1967.
  78. ^ Pauling, Keaveny & Robinson 1970.
  79. ^ L. Pauling, I. Keaveny, and A. B. Robinson: The Crystal Structure of α-Fluorine. In: Journal of solid state chemistry. 2, 1970, S. 225–221.
  80. ^ Dean 1999، صفحة 564.
  81. ^ Lide 2004، صفحات 10.137–10.138.
  82. ^ Moore, Stanitski & Jurs 2010، صفحة 156. نسخة محفوظة 13 أبريل 2020 على مسقط واي باك مشين.
  83. ^ Cordero et al. 2008.
  84. ^ Pyykkö & Atsumi 2009.
  85. Greenwood & Earnshaw 1998، صفحة 804.
  86. ^ Macomber 1996، صفحة 230 نسخة محفوظة 21 مايو2019 على مسقط واي باك مشين.
  87. ^ Nelson 1947.
  88. George Hamilton Cady: Reaction of Fluorine with Water and with Hydroxides. In: Journal of the American Chemical Society. 57, 1935, S. 246–249, doi:10.1021/ja01305a006.
  89. ^ Pitzer 1975.
  90. Khriachtchev et al. 2000.
  91. ^ Lidin, Molochko & Andreeva 2000، صفحات 442–455.
  92. Wiberg, Wiberg & Holleman 2001، صفحة 404.
  93. ^ Patnaik 2007، صفحة 472.
  94. ^ Aigueperse et al. 2000، صفحة 400.
  95. ^ Kuriakose & Margrave 1965.
  96. ^ Hasegawa et al. 2007.
  97. ^ Lagow 1970، صفحات 64–78.
  98. ^ Navarrini et al. 2012.
  99. ^ Greenwood & Earnshaw 1998، صفحات 76, 804.
  100. ^ Lidin, Molochko & Andreeva 2000، صفحة 252.
  101. ^ Tanner Industries 2011.
  102. ^ Morrow, Perry & Cohen 1959.
  103. ^ Emeléus & Sharpe 1974، صفحة 111. نسخة محفوظة 21 مايو2019 على مسقط واي باك مشين.
  104. ^ Wiberg, Wiberg & Holleman 2001، صفحة 457.
  105. ^ Brantley 1949، صفحة 26. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  106. ^ Jaccaud et al. 2000، صفحة 383.
  107. ^ Riedel & Kaupp 2009.
  108. ^ Harbison 2002.
  109. ^ Edwards 1994، صفحة 515. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  110. ^ Pauling 1960، صفحات 454–464. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  111. ^ Atkins & Jones 2007، صفحات 184–185.
  112. ^ Emsley 1981.
  113. ^ Greenwood & Earnshaw 1998، صفحات 812–816.
  114. ^ Wiberg, Wiberg & Holleman 2001، صفحة 425.
  115. ^ Clark 2002.
  116. ^ Chambers & Holliday 1975، صفحات 328–329.
  117. ^ Katakuse et al. 1999، صفحة 267. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  118. Aigueperse et al. 2000، صفحات 420–422.
  119. ^ Walsh 2009، صفحات 99–102, 118–119. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  120. ^ Emeléus & Sharpe 1983، صفحات 89–97.
  121. ^ Babel & Tressaud 1985، صفحات 91–96. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  122. ^ Einstein et al. 1967.
  123. ^ Brown et al. 2005، صفحة 144. نسخة محفوظة 13 أبريل 2020 على مسقط واي باك مشين.
  124. Perry 2011، صفحة 193. نسخة محفوظة 21 مايو2019 على مسقط واي باك مشين.
  125. ^ Kern et al. 1994.
  126. ^ Lide 2004، صفحات 4.60, 4.76, 4.92, 4.96.
  127. ^ Lide 2004، صفحة 4.96.
  128. ^ Lide 2004، صفحة 4.92.
  129. ^ Greenwood & Earnshaw 1998، صفحة 964.
  130. ^ Becker & Müller 1990.
  131. ^ Greenwood & Earnshaw 1998، صفحة 990.
  132. ^ Lide 2004، صفحات 4.72, 4.91, 4.93.
  133. Greenwood & Earnshaw 1998، صفحات 561–563.
  134. ^ Emeléus & Sharpe 1983، صفحات 256–277.
  135. ^ Mackay, Mackay & Henderson 2002، صفحات 355–356.
  136. ^ Greenwood & Earnshaw 1998، (various pages, by metal in respective chapters).
  137. ^ Lide 2004، صفحات 4.71, 4.78, 4.92.
  138. ^ Drews et al. 2006.
  139. ^ Greenwood & Earnshaw 1998، صفحة 819.
  140. ^ Bartlett 1962.
  141. ^ Noury, Silvi & Gillespie 2002.
  142. ^ Chang & Goldsby 2013، صفحة 706.
  143. ^ Ellis 2001، صفحة 69.
  144. ^ Aigueperse et al. 2000، صفحة 423.
  145. ^ Wiberg, Wiberg & Holleman 2001، صفحة 897.
  146. ^ Raghavan 1998، صفحات 164–165. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  147. ^ Godfrey et al. 1998، صفحة 98. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  148. ^ Aigueperse et al. 2000، صفحة 432.
  149. ^ Murthy, Mehdi Ali & Ashok 1995، صفحات 180–182, 206–208. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  150. ^ Greenwood & Earnshaw 1998، صفحات 638–640, 683–689, 767–778.
  151. ^ Wiberg, Wiberg & Holleman 2001، صفحات 435–436.
  152. ^ Greenwood & Earnshaw 1998، صفحات 828–830.
  153. ^ Patnaik 2007، صفحات 478–479. نسخة محفوظة 13 فبراير 2020 على مسقط واي باك مشين.
  154. ^ Moeller, Bailar & Kleinberg 1980، صفحة 236.
  155. ^ Wiberg, Wiberg & Holleman 2001، صفحات 392–393.
  156. ^ Wiberg, Wiberg & Holleman 2001، صفحة 395–397, 400.
  157. ^ Lewars 2008، صفحة 68.
  158. ^ Pitzer 1993، صفحة 111. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  159. ^ Lewars 2008، صفحة 67.
  160. ^ Bihary, Chaban & Gerber 2002.
  161. ^ Lewars 2008، صفحة 71.
  162. ^ O'Hagan 2008.
  163. ^ Siegemund et al. 2005، صفحة 444.
  164. ^ Sandford 2000، صفحة 455.
  165. ^ Siegemund et al. 2005، صفحات 451–452.
  166. ^ Barbee, McCormack & Vartanian 2000، صفحة 116. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  167. ^ Posner et al. 2013، صفحات 187–190. "Perfluorinated+compounds,+hydrocarbons+that+are+fully+fluorinated+except+for+one+functional+group" نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  168. ^ Posner 2011، صفحة 27.
  169. ^ Salager 2002، صفحة 45.
  170. ^ Tetrabutylammonium-Salze. In: Römpp Online. Georg Thieme Verlag
  171. ^ Hoogers 2004، صفحات 4–12.
  172. Carlson & Scmiegel 2005، صفحة 3.
  173. Carlson & Scmiegel 2005، صفحات 3–4.
  174. ^ Rhoades 2008، صفحة 2. نسخة محفوظةخمسة مارس 2016 على مسقط واي باك مشين.
  175. ^ Okada et al. 1998.
  176. ^ Carlson & Scmiegel 2005، صفحة 4.
  177. Gerhart Jander, E. Blasius: Einführung in das anorganisch-chemische Praktikum. 15. Aufl., S. Hirzel Verlag, Stuttgart 2005, ISBN 3-7776-1364-9.
  178. ^ WHO: Fluoride in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality WHO/SDE/WSH/03.04/96, World Health Organization 2004 (pdf). نسخة محفوظة 19 سبتمبر 2017 على مسقط واي باك مشين.
  179. ^ Nielsen 2009.
  180. ^ Olivares & Uauy 2004.
  181. ^ W. Kaim, B. Schwederski: Bioanorganische Chemie. 4. Auflage, Teubner, 2005, ISBN 3-519-33505-0.
  182. ^ Pizzo 2007.
  183. ^ L. Stösser, R. Heinrich-Weltzien: Kariesprävention mit Fluoriden, In: Oralprophylaxe und Kinderzahnheilkunde. 29, 2007.
  184. ^ Cem Ekmekcioglu, Wolfgang Marktl: Essentielle Spurenelemente: Klinik und Ernährungsmedizin. Springer, 2006, ISBN 978-3-211-20859-5, S. 142–143.
  185. ^ CDC 2001.
  186. ^ Ripa 1993.
  187. Cheng, Chalmers & Sheldon 2007.
  188. ^ Gesundheitsdepartement Basel-Stadt: Umstellung von der Trinkwasser- zur Salzfluoridierung in Basel. Medienmitteilung vom 24. Juni 2003, abgerufen am 5. Dezember 2012.[وصلة مكسورة]نسخة محفوظة 13 أبريل 2020 على مسقط واي باك مشين.
  189. ^ NHMRC 2007; see Yeung 2008 for a summary.
  190. Baelum, Sheiham & Burt 2008، صفحة 518. نسخة محفوظة 18 مايو2019 على مسقط واي باك مشين.
  191. ^ Marya 2011، صفحة 343. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  192. ^ Armfield 2007.
  193. ^ Cracher 2012، صفحة 12.
  194. Murphy, Schaffrath & O'Hagan 2003
  195. Proudfoot, Bradberry & Vale 2006.
  196. ^ O'Hagan et al. 2002.
  197. ^ Schwarcz 2004، صفحة 37.
  198. ^ Giesy & Kannan 2002.
  199. Steenland, Fletcher & Savitz 2010.
  200. Betts 2007.
  201. ^ EPA 2012.
  202. ^ Zareitalabad et al. 2013.
  203. Lau et al. 2007.
  204. ^ Beck et al. 2011.
  205. ^ Aucamp & Björn 2010، صفحات 4–6, 41, 46–47.
  206. ^ Crow 2011.
  207. ^ Barry & Phillips 2006.
  208. ^ EPA 2013a.
  209. ^ EPA 2013b.
  210. ^ Forster et al. 2007، صفحات 212–213.
  211. Walter 2013.
  212. Jaccaud et al. 2000، صفحة 392.
  213. ^ Aigueperse et al. 2000، صفحة 430.
  214. ^ Miller 2003a.
  215. ^ Energetics, Inc. 1997، صفحات 41, 50.
  216. ^ Aigueperse et al. 2000، صفحة 428.
  217. ^ Willey 2007، صفحة 113. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  218. ^ Jaccaud et al. 2000، صفحات 391–392.
  219. ^ PRWeb 2010.
  220. Renner 2006.
  221. ^ El-Kareh 1994، صفحة 317. نسخة محفوظة 13 أبريل 2020 على مسقط واي باك مشين.
  222. ^ Arana et al. 2007.
  223. ^ Slye 2012، صفحة 10.
  224. ^ Green et al. 1994، صفحات 91–93. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  225. ^ DuPont 2013b.
  226. Buznik 2009.
  227. ^ PRWeb 2013.
  228. Martin 2007، صفحات 187–194. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  229. ^ DeBergalis 2004.
  230. ^ Kissa 2001، صفحات 516–551. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  231. ^ Ullmann 2008، صفحات 538, 543–547.
  232. ^ [1], . Tressaud, E. Durand, C. Labrugère, A.P. Kharitonov, L.N. Kharitonova, Modification of surface properties of carbon-based and polymeric materials through fluorination routes: From fundamental research to industrial applications, Journal of Fluorine Chemistry, Volume 128, Issue 4, April 2007, Pages 378-391. نسخة محفوظة 24 سبتمبر 2015 على مسقط واي باك مشين.
  233. ^ ICIS 2006.
  234. Theodoridis 2006.
  235. ^ EPA 1996.
  236. ^ DG Environment 2007.
  237. ^ Eisler 1995
  238. ^ Beasley 2002.
  239. ^ Emsley 2011، صفحة 178.
  240. ^ Hagmann 2008.
  241. Swinson 2005.
  242. ^ Johnson 2011.
  243. ^ Mitchell 2004، صفحات 37–39. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  244. ^ Preskorn 1996، chap. 2. نسخة محفوظة 20 فبراير 2019 على مسقط واي باك مشين.
  245. ^ Werner et al. 2011.
  246. ^ Brody 2012.
  247. ^ Nelson et al. 2007.
  248. ^ King, Malone & Lilley 2000.
  249. ^ Parente 2001، صفحة 40. نسخة محفوظة 14 فبراير 2020 على مسقط واي باك مشين.
  250. ^ Raj & Erdine 2012، صفحة 58. نسخة محفوظة 19 مايو2019 على مسقط واي باك مشين.
  251. ^ Filler & Saha 2009.
  252. ^ Bégué & Bonnet-Delpon 2008، صفحات 335–336. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  253. Schmitz et al. 2000.
  254. ^ Bustamante & Pedersen 1977.
  255. ^ Alavi & Huang 2007، صفحة 41.
  256. ^ Gabriel et al. 1996.
  257. ^ Sarkar 2008.
  258. ^ Schimmeyer 2002.
  259. ^ Davis 2006.
  260. ^ Gains 1998.
  261. ^ Taber 1999.
  262. ^ Shaffer, Wolfson & Clark 1992، صفحة 102.
  263. ^ Kacmarek et al. 2006.
  264. ^ The National Institute for Occupational Safety and Health 1994a.
  265. ^ The National Institute for Occupational Safety and Health 1994b.
  266. ^ Keplinger & Suissa 1968.
  267. ^ "CDC - NIOSH Pocket Guide to Chemical Hazards - Fluorine". www.cdc.gov. مؤرشف من الأصل في 25 مايو2019. اطلع عليه بتاريخ 03 نوفمبر 2015.
  268. ^ Emsley 2011، صفحة 179.
  269. ^ Biller 2007، صفحة 939.
  270. ^ Eaton 1997.
  271. ^ Blodgett, Suruda & Crouch 2001.
  272. ^ Hoffman et al. 2007، صفحة 1333.
  273. HSM 2006.
  274. ^ S. L. Edwards, T. L. Poulos, J. Kraut (1984). "The crystal structure of fluoride-inhibited cytochrome c peroxidase" (PDF). Journal of Biological Chemistry. 259 (21): 12984–12988. مؤرشف من الأصل (PDF) فيستة فبراير 2019. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  275. ^ Fischman 2001، صفحات 458–459. نسخة محفوظة 18 مايو2019 على مسقط واي باك مشين.
  276. ^ El Saadi et al. 1989.
  277. ^ Roblin et al. 2006.
  278. ^ Hultén et al. 2004.
  279. ^ Zorich 1991، صفحات 182–183. نسخة محفوظة 20 مايو2019 على مسقط واي باك مشين.
  280. ^ Liteplo et al. 2002، صفحة 100.
  281. Shin & Silverberg 2013.
  282. ^ Reddy 2009.
  283. ^ Baez, Baez & Marthaler 2000.
  284. Augenstein et al. 1991.
  285. ^ Gessner et al. 1994.
  286. ^ CDC 2013.
  287. ^ Shulman & Wells 1997.


المصادر مرتبة أبجدياً

  • Agricola, Georgius; Hoover, Herbert Clark; Hoover, Lou Henry (1912). . London: The Mining Magazine. CS1 maint: ref=harv (link)
  • Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R. E.; Cue, J. P. (2000). "Fluorine Compounds, Inorganic". In Ullmann, Franz (المحرر). Ullmann's Encyclopedia of Industrial Chemistry. 15. Weinheim: Wiley-VCH. صفحات 397–441. doi:10.1002/14356007. ISBN .
  • Air Products and Chemicals (2004). "Safetygram #39 Chlorine Trifluoride" (PDF). Air Products and Chemicals. مؤرشف من الأصل (PDF) في 18 مارس 2006. اطلع عليه بتاريخ 16 فبراير 2014. CS1 maint: ref=harv (link)
  • Alavi, Abbas; Huang, Steve S. (2007). "Positron Emission Tomography in Medicine: An Overview". In Hayat, M. A. (المحرر). Cancer Imaging, Volume 1: Lung and Breast Carcinomas. Burlington: Academic Press. صفحات 39–44. ISBN . CS1 maint: ref=harv (link)
  • Ampère, André-Marie (1816). "Suite d'une classification naturelle pour les corps simples". Annales de chimie et de physique (باللغة الفرنسية). 2: 1–5. CS1 maint: ref=harv (link)
  • Arana, L. R.; Mas, N.; Schmidt, R.; Franz, A. J.; Schmidt, M. A.; Jensen, K. F. (2007). "Isotropic Etching of Silicon in Fluorine Gas for MEMS Micromachining". Journal of Micromechanics and Microengineering. 17 (2): 384. Bibcode:2007JMiMi..17..384A. doi:10.1088/0960-1317/17/2/026.
  • Armfield, J. M. (2007). "When Public Action Undermines Public Health: A Critical Examination of Antifluoridationist Literature". Australia and New Zealand Health Policy. 4: 25. doi:10.1186/1743-8462-4-25. PMC 2222595. PMID 18067684.
  • Asimov, Isaac (1966). The Noble Gases. New York: Basic Books. ISBN . CS1 maint: ref=harv (link)
  • Atkins, Peter; Jones, Loretta (2007). Chemical Principles: The Quest for Insight (الطبعة 4th). New York: W. H. Freeman. ISBN . CS1 maint: ref=harv (link)
  • Aucamp, Pieter J.; Björn, Lars Olof (2010). "Questions and Answers about the Environmental Effects of the Ozone Layer Depletion and Climate Change: 2010 Update" (PDF). United Nations Environmental Programme. اطلع عليه بتاريخ 14 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Augenstein, W. L.; et al. (1991). "Fluoride Ingestion in Children: A Review of 87 cases". Pediatrics. 88 (5): 907–912. PMID 1945630.
  • Babel, Dietrich; Tressaud, Alain (1985). "Crystal Chemistry of Fluorides". In Hagenmuller, Paul (المحرر). Inorganic Solid Fluorides: Chemistry And Physics. Orlando: Academic Press. صفحات 78–203. ISBN . CS1 maint: ref=harv (link)
  • Baelum, Vibeke; Sheiham, Aubrey; Burt, Brian (2008). "Caries Control for Populations". In Fejerskov, Ole; Kidd, Edwina (المحررون). Dental Caries: The Disease and Its Clinical Management (الطبعة 2nd). Oxford: Blackwell Munksgaard. صفحات 505–526. ISBN . CS1 maint: ref=harv (link)
  • Baez, Ramon J.; Baez, Martha X.; Marthaler, Thomas M. (2000). "Urinary Fluoride Excretion by Children 4–6 Years Old in a South Texas Community". Revista Panamericana de Salud Pública. 7 (4): 242–248. doi:10.1590/S1020-49892000000400005.
  • Banks, R. E. (1986). "Journal of Fluorine Chemistry". Journal of Fluorine Chemistry. 33 (1–4): 3–26. doi:10.1016/S0022-1139(00)85269-0.
  • Barbee, K.; McCormack, K.; Vartanian, V. (2000). "EHS Concerns with Ozonated Water Spray Processing". In Mendicino, L. (المحرر). Environmental Issues in the Electronics and Semiconductor Industries. Pennington, NJ: The Electrochemical Society. صفحات 108–121. ISBN . CS1 maint: ref=harv (link)
  • Barrett, C. S.; Meyer, L.; Wasserman, J. (1967). "Argon—Fluorine Phase Diagram". The Journal of Chemical Physics. 47 (2): 740–743. Bibcode:1967JChPh..47..740B. doi:10.1063/1.1711946.
  • Barry, Patrick L.; Phillips, Tony (26 May 2006). "Good News and a Puzzle". National Aeronautics and Space Administration. اطلع عليه بتاريخ 06 يناير 2012. CS1 maint: ref=harv (link)
  • Bartlett, N. (1962). "Xenon Hexafluoroplatinate (V) Xe+[PtF6]". Proceedings of the Chemical Society (6): 218. doi:10.1039/PS9620000197.
  • Beasley, Michael (August 2002). "Guidelines for the safe use of sodium fluoroacetate (1080)" (PDF). Wellington: Occupational Safety & Health Service, Department of Labour (New Zealand). ISBN . اطلع عليه بتاريخ 11 نوفمبر 2013. CS1 maint: ref=harv (link)
  • Beck, Jefferson; Newman, Paul; Schindler, Trent L.; Perkins, Lori (2011). "What Would have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?". National Aeronautics and Space Administration. اطلع عليه بتاريخ 15 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Becker, S.; Müller, B. G. (1990). "Vanadium Tetrafluoride". Angewandte Chemie International Edition in English. 29 (4): 406. doi:10.1002/anie.199004061.
  • Bégué, Jean-Pierre; Bonnet-Delpon, Danièle (2008). Bioorganic and Medicinal Chemistry of Fluorine. Hoboken: John Wiley & Sons. ISBN . CS1 maint: ref=harv (link)
  • Betts, K. S. (2007). "Perfluoroalkyl Acids: What is the Evidence Telling Us?". Environmental Health Perspectives. 115 (5): A250–A256. doi:10.1289/ehp.115-a250. PMC 1867999. PMID 17520044.
  • Bihary, Z.; Chaban, G. M.; Gerber, R. B. (2002). "Stability of a Chemically Bound Helium Compound in High-pressure Solid Helium". The Journal of Chemical Physics. 117 (11): 5105–5108. Bibcode:2002JChPh.117.5105B. doi:10.1063/1.1506150.
  • Biller, José (2007). (الطبعة illustrated). Philadelphia: Lippincott Williams & Wilkins. ISBN . CS1 maint: ref=harv (link)
  • Blodgett, D. W.; Suruda, A. J.; Crouch, B. I. (2001). "Fatal Unintentional Occupational Poisonings by Hydrofluoric Acid in the U.S" (PDF). American Journal of Industrial Medicine. 40 (2): 215–220. doi:10.1002/ajim.1090. PMID 11494350. CS1 maint: ref=harv (link)
  • Bombourg, Nicolas (4 July 2012). "World Fluorochemicals Market, Freedonia". Reporterlinker. اطلع عليه بتاريخ 20 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Brantley, L. R. (1949). Squires, Roy; Clarke, Arthur C. (المحررون). "Fluorine". Pacific Rockets: Journal of the Pacific Rocket Society. South Pasadena: Sawyer Publishing/Pacific Rocket Society Historical Library. 3 (1): 11–18. ISBN . CS1 maint: ref=harv (link)
  • Brody, Jane E. (10 September 2012). "Popular Antibiotics May Carry Serious Side Effects". The New York Times Well Blog. اطلع عليه بتاريخ 18 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Brown, Paul L.; Mompean, Federico J.; Perrone, Jane; Illemassène, Myriam (2005). Chemical Thermodynamics of Zirconium. Amsterdam: Elsevier B. V. ISBN .
  • Burdon, J.; Emson, B.; Edwards, A. J. (1987). "Is Fluorine Gas Really Yellow?". Journal of Fluorine Chemistry. 34 (3–4): 471. doi:10.1016/S0022-1139(00)85188-X.
  • Bürgi, H. B. (2000). "Motion and Disorder in Crystal Structure Analysis: Measuring and Distinguishing them" (PDF). Annual Review of Physical Chemistry. 51: 275–296. Bibcode:2000ARPC...51..275B. doi:10.1146/annurev.physchem.51.1.275. PMID 11031283.
  • Burney, H. (1999). "Past, Present and Future of the Chlor-Alkali Industry". In Burney, H. S.; Furuya, N.; Hine, F.; Ota, K.-I. (المحررون). Chlor-Alkali and Chlorate Technology: R. B. MacMullin Memorial Symposium. Pennington: The Electrochemical Society. صفحات 105–126. ISBN . CS1 maint: ref=harv (link)
  • Bustamante, E.; Pedersen, P. L. (1977). "High Aerobic Glycolysis of Rat Hepatoma Cells in Culture: Role of Mitochondrial Hexokinase". Proceedings of the National Academy of Sciences. 74 (9): 3735–3739. Bibcode:1977PNAS...74.3735B. doi:10.1073/pnas.74.9.3735. PMC 431708. PMID 198801.
  • Buznik, V. M. (2009). "Fluoropolymer Chemistry in Russia: Current Situation and Prospects". Russian Journal of General Chemistry. 79 (3): 520–526. doi:10.1134/S1070363209030335.
  • Cameron, A. G. W. (1973). "Abundance of the Elements in the Solar System" (PDF). Space Science Review. 15: 121–146. Bibcode:1973SSRv...15..121C. doi:10.1007/BF00172440.
  • Carey, Charles W. (2008). African Americans in Science. Santa Barbara: ABC-CLIO. ISBN . CS1 maint: ref=harv (link)
  • Carlson, D. P.; Schmiegel, W. (2000). "Fluoropolymers, Organic". In Ullmann, Franz (المحرر). Ullmann's Encyclopedia of Industrial Chemistry. 15. Weinheim: Wiley-VCH. صفحات 495–533. doi:10.1002/14356007.a11_393. ISBN .
  • Centers for Disease Control and Prevention (2001). "Recommendations for Using Fluoride to Prevent and Control Dental Caries in the United States". MMWR Recommendations and Reports. 50 (RR–14): 1–42. PMID 11521913. اطلع عليه بتاريخ 14 أكتوبر 2013.
  • Centers for Disease for Control and Prevention (10 July 2013). "Community Water Fluoridation". اطلع عليه بتاريخ 25 أكتوبر 2013.
  • Chambers, C.; Holliday, A. K. (1975). (PDF). London: Butterworth & Co. ISBN . CS1 maint: ref=harv (link)
  • Chang, Raymond; Goldsby, Kenneth A. (2013). Chemistry (الطبعة 11th). New York: McGraw-Hill. ISBN . CS1 maint: ref=harv (link)
  • Cheng, H.; Fowler, D. E.; Henderson, P. B.; Hobbs, J. P.; Pascolini, M. R. (1999). "On the Magnetic Susceptibility of Fluorine". The Journal of Physical Chemistry A. 103 (15): 2861–2866. doi:10.1021/jp9844720.
  • Cheng, K. K.; Chalmers, I.; Sheldon, T. A. (2007). "Adding Fluoride to Water Supplies" (PDF). BMJ. 335 (7622): 699–702. doi:10.1136/bmj.39318.562951.BE. PMC 2001050. PMID 17916854.
  • Chisté, V.; Bé, M. M. (2011). "F-18". In Bé, M. M.; Coursol, N.; Duchemin, B.; Lagoutine, F.; et al. (المحررون). Table de radionucléides (PDF) (Report). CEA (Commissariat à l'énergie atomique et aux énergies alternatives), LIST, LNE-LNHB (Laboratoire National Henri Becquerel/Commissariat à l'Energie Atomique). اطلع عليه بتاريخ 15 يونيو2011.
  • Christe, Karl O. (1986). "Chemical Synthesis of Elemental Fluorine". Inorganic Chemistry. 25 (21): 3721–3722. doi:10.1021/ic00241a001.
  • Christe Research Group (n.d.). "Chemical Synthesis of Elemental Fluorine:". اطلع عليه بتاريخ 12 يناير 2013. CS1 maint: ref=harv (link)
  • Clark, Jim (2002). "The Acidity of the Hydrogen Halides". chemguide.co.uk. اطلع عليه بتاريخ 15 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Clayton, Donald (2003). Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. New York: Cambridge University Press. ISBN . CS1 maint: ref=harv (link)
  • Compressed Gas Association (1999). Handbook of Compressed Gases (الطبعة 4th). Boston: Kluwer Academic Publishers. ISBN . CS1 maint: ref=harv (link)
  • Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. (2008). "Covalent Radii Revisited". Dalton Transactions (21): 2832–2838. doi:10.1039/b801115j.
  • Cracher, Connie M. (2012). "Current Concepts in Preventive Dentistry" (PDF). dentalcare.com. اطلع عليه بتاريخ 14 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Croswell, Ken (September 2003). "Fluorine: An element–ary Mystery". Sky and Telescope. اطلع عليه بتاريخ 17 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Mitchell Crow, James (2011). "First signs of ozone-hole recovery spotted". Nature. doi:10.1038/news.2011.293.
  • Davis, Nicole. "Better than blood". Popular Science (November 2006). مؤرشف من الأصل في 04 يونيو2011. اطلع عليه بتاريخ 20 أكتوبر 2013.
  • Davy, Humphry (1813). "Some experiments and observations on the substances produced in different chemical processes on fluor spar". Philosophical Transactions of the Royal Society. 103: 263–279. doi:10.1098/rstl.1813.0034. CS1 maint: ref=harv (link)
  • Dean, John A. (1999). Lange's Handbook of Chemistry (الطبعة 15th). New York: McGraw-Hill. ISBN . CS1 maint: ref=harv (link)
  • Debergalis, Michael (2004). "Fluoropolymer films in the photovoltaic industry". Journal of Fluorine Chemistry. 125 (8): 1255. doi:10.1016/j.jfluchem.2004.05.013.
  • Directorate-General for the Environment (European Commission) (2007). Trifluralin (PDF) (Report). European Commission. اطلع عليه بتاريخ 14 أكتوبر 2013.
  • Drews, T.; Supeł, J.; Hagenbach, A.; Seppelt, K. (2006). "Solid State Molecular Structures of Transition Metal Hexafluorides". Inorganic Chemistry. 45 (9): 3782–3788. doi:10.1021/ic052029f. PMID 16634614.
  • DuPont (2013a). "Freon". اطلع عليه بتاريخ 17 أكتوبر 2013. CS1 maint: ref=harv (link)
  • DuPont (2013b). "Understanding the Refrigerant 'R' Nomenclature". اطلع عليه بتاريخ 17 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Eaton, Charles (1997). "Figure hfl". E-Hand.com: The Electronic Textbook of Hand Surgery. The Hand Center (former practice of Dr. Eaton). اطلع عليه بتاريخ 28 سبتمبر 2013. CS1 maint: ref=harv (link)
  • Edwards, Philip Neil (1994). "Use of Fluorine in Chemotherapy". In Banks, R. E.; Smart, B. E.; Tatlow, J. C. (المحررون). Organofluorine Chemistry: Principles and Commercial Applications. New York: Plenum Press. صفحات 501–542. ISBN . CS1 maint: ref=harv (link)
  • Einstein, F. W. B.; Rao, P. R.; Trotter, J.; Bartlett, N. (1967). "The Crystal Structure of Gold Trifluoride". Journal of the Chemical Society A: Inorganic, Physical, Theoretical. 4: 478–482. doi:10.1039/J19670000478.
  • Eisler, Ronald (1995). Sodium Monofluoroacetate (1080) Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review (PDF) (Report). Patuxent Environmental Science Center (U.S. National Biological Service). اطلع عليه بتاريخ 05 يونيو2011. CS1 maint: ref=harv (link)
  • Ellis, Brian (2001). Scientific Essentialism. Cambridge: Cambridge University Press. ISBN . CS1 maint: ref=harv (link)
  • El-Kareh, Badih (1994). Fundamentals of Semiconductor Processing Technology. Norwell and Dordrecht: Kluwer Academic Publishers. ISBN . CS1 maint: ref=harv (link)
  • El Saadi, M. S.; Hall, A. H.; Hall, P. K.; Riggs, B. S.; Augenstein, W. L.; Rumack, B. H. (1989). "Hydrofluoric Acid Dermal Exposure". Veterinary and Human Toxicology. 31 (3): 243–247. PMID 2741315.
  • Emeléus, H. J.; Sharpe, A. G. (1974). Advances in Inorganic Chemistry and Radiochemistry. 16. New York: Academic Press. ISBN . CS1 maint: ref=harv (link)
  • Emeléus, H. J.; Sharpe, A. G. (1983). Advances in Inorganic Chemistry and Radiochemistry. 27. Academic Press. ISBN . CS1 maint: ref=harv (link)
  • Emsley, John (1981). "The Hidden Strength of Hydrogen". New Scientist. 91 (1264): 291–292. CS1 maint: ref=harv (link)
  • Emsley, John (2011). Nature's Building Blocks: An A–Z Guide to the Elements (الطبعة 2nd). Oxford: Oxford University Press. ISBN . CS1 maint: ref=harv (link)
  • Energetics, Inc. (1997). Energy and Environmental Profile of the U.S. Aluminum Industry (PDF) (Report). اطلع عليه بتاريخ 15 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Filler, R.; Saha, R. (2009). "Fluorine in Medicinal Chemistry: A Century of Progress and a 60-year Retrospective of Selected Highlights" (PDF). Future Medicinal Chemistry. 1 (5): 777–791. doi:10.4155/fmc.09.65. PMID 21426080.
  • Fischman, Michael L. (2001). "Semiconductor Manufacturing Hazards". In Sullivan, John B.; Krieger, Gary R. (المحررون). Clinical Environmental Health and Toxic Exposures (الطبعة 2nd). Philadelphia: Lippincott Williams & Wilkins. صفحات 431–465. ISBN . CS1 maint: ref=harv (link)
  • Forster, P.; Ramaswamy, V; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D. W.; Haywood, J.; Lean, J.; Lowe, D. C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M.; Van Dorland, R. (2007). "Changes in Atmospheric Constituents and in Radiative Forcing". In Solomon, S.; Manning, M; Chen, Z.; Marquis, M; Averyt, K. B.; Tignor, M.; Miller, H. L. (المحررون). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University. صفحات 129–234. ISBN .
  • Fulton, Robert B.; Miller, M. Michael (2006). "Fluorspar". In Kogel, Jessica Elzea; Trivedi, Nikhil C.; Barker, James M.; Krukowski, Stanley T. (المحررون). Industrial Minerals & Rocks: Commodities, Markets, and Uses. Littleton: Society for Mining, Metallurgy, and Exploration (U.S.). صفحات 461–473. ISBN . CS1 maint: ref=harv (link)
  • Gabriel, J. L.; Miller Jr, T. F.; Wolfson, M. R.; Shaffer, T. H. (1996). "Quantitative Structure-Activity Relationships of Perfluorinated Hetero-Hydrocarbons as Potential Respiratory Media". ASAIO Journal. 42 (6): 968–973. doi:10.1097/00002480-199642060-00009. PMID 8959271.
  • Gains, Paul (18 October 1998). "A New Threat in Blood Doping". The New York Times. اطلع عليه بتاريخ 18 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Gessner, B. D.; Beller, M.; Middaugh, J. P.; Whitford, G. M. (1994). "Acute Fluoride Poisoning from a Public Water System". New England Journal of Medicine. 330 (2): 95–99. doi:10.1056/NEJM199401133300203. PMID 8259189.
  • Giesy, J.P.; Kannan, K. (2002). "Perfluorochemical Surfactants in the Environment". Environmental Science & Technology. 36 (7): 146A–152A. doi:10.1021/es022253t. PMID 11999053.
  • Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. (1998). "Inorganic Derivatives of the Elements". In Norman, Nicholas C. (المحرر). Chemistry of Arsenic, Antimony and Bismuth. London: Blackie Academic & Professional. صفحات 67–158. ISBN .
  • Green, S. W.; Slinn, D. S. L.; Simpson, R. N. F.; Woytek, A. J. (1994). "Perfluorocarbon Fluids". In Banks, R. E.; Smart, B. E.; Tatlow, J. C. (المحررون). Organofluorine Chemistry: Principles and Applications. New York: Plenum Press. صفحات 89–119. ISBN . CS1 maint: ref=harv (link)
  • Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (الطبعة 2nd). Oxford: Butterworth Heinemann. ISBN . CS1 maint: ref=harv (link)
  • Gribble, G. W. (2002). "Naturally Occurring Organofluorines". In Neison, A. H. (المحرر). Organofluorines. 3N. Berlin: Springer. صفحات 121–136. doi:10.1007/10721878_5. ISBN . CS1 maint: ref=harv (link)
  • Grot, Walter (2011). Fluorinated Ionomers (الطبعة 2nd). Oxford and Waltham: Elsevier. ISBN . CS1 maint: ref=harv (link)
  • Hagmann, W. K. (2008). "The Many Roles for Fluorine in Medicinal Chemistry". Journal of Medicinal Chemistry. 51 (15): 4359–4369. doi:10.1021/jm800219f. PMID 18570365.
  • Harbison, G. S. (2002). "The Electric Dipole Polarity of the Ground and Low-lying Metastable Excited States of NF". Journal of the American Chemical Society. 124 (3): 366–367. doi:10.1021/ja0159261. PMID 11792193.
  • Hasegawa, Y.; Otani, R.; Yonezawa, S.; Takashima, M. (2007). "Reaction Between Carbon Dioxide and Elementary Fluorine". Journal of Fluorine Chemistry. 128 (1): 17–28. doi:10.1016/j.jfluchem.2006.09.002.
  • Haxel, G. B.; Hedrick, J. B.; Orris, G. J. (2005). Stauffer, P. H.; Hendley II, J. W. (المحررون). Rare Earth Elements—Critical Resources for High Technology, Fact Sheet 087-02 (Report). U.S. Geological Survey. اطلع عليه بتاريخ 31 يناير 2014. CS1 maint: ref=harv (link)
  • Haynes, William M., المحرر (2011). Handbook of Chemistry and Physics (الطبعة 92nd). Boca Raton: CRC Press. ISBN .
  • Hoffman, Robert; Nelson, Lewis; Howland, Mary; Lewin, Neal; Flomenbaum, Neal; Goldfrank, Lewis (2007). Goldfrank's Manual of Toxicologic Emergencies. New York: McGraw-Hill Professional. ISBN .
  • Honeywell (2006). (PDF). Morristown: Honeywell International. اطلع عليه بتاريخ 09 يناير 2014.
  • Hoogers, G. (2002). "Fuel Cell Components and Their Impact on Performance". In Hoogers, G. (المحرر). Fuel Cell Technology Handbook. Boca Raton: CRC Press. صفحات 4–1–4–27. ISBN .
  • Hounshell, David A.; Smith, John Kelly (1988). Science and Corporate Strategy: DuPont R & D, 1902–1980. Cambridge: Cambridge University Press. ISBN . CS1 maint: ref=harv (link)
  • Hultén, P.; Höjer, J.; Ludwigs, U.; Janson, A. (2004). "Hexafluorine vs. Standard Decontamination to Reduce Systemic Toxicity After Dermal Exposure to Hydrofluoric Acid". Clinical Toxicology. 42 (4): 355–361. doi:10.1081/CLT-120039541. PMID 15461243.
  • ICIS (2 October 2006). "Fluorine's Treasure Trove". Reed Business Information. اطلع عليه بتاريخ 24 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R. (2000). "Fluorine". In Ullmann, Franz (المحرر). Ullmann's Encyclopedia of Industrial Chemistry. 15. Weinheim: Wiley-VCH. صفحات 381–395. doi:10.1002/14356007.a11_293. ISBN .
  • Johnson, Linda A. (28 December 2011). "Against Odds, Lipitor Became World's Top Seller". The Boston Globe. اطلع عليه بتاريخ 24 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Kacmarek, Robert M.; Wiedemann, Herbert P.; Lavin, Philip T.; Wedel, Mark K.; Tütüncü, Ahmet S.; Slutsky, Arthur S. (2006). "Partial Liquid Ventilation in Adult Patients with Acute Respiratory Distress Syndrome". American Journal of Respiratory and Critical Care Medicine. 173 (8): 882. doi:10.1164/rccm.200508-1196OC. PMID 16254269.
  • Katakuse, Itsuo; Ichihara, Toshio; Ito, Hiroyuki; Sakurai, Tohru; Matsuo, Takekiyo (1999). "SIMS Experiment". In Arai, T; Mihama, K; Yamamoto, K; Sugano, S (المحررون). Mesoscopic Materials and Clusters: Their Physical and Chemical Properties. Tokyo: Kodansha. صفحات 259–273. ISBN .
  • Kelly, T. D.; Miller, M. M. (2005). "Historical Fluorspar Statistics". U.S. Geological Service. اطلع عليه بتاريخعشرة فبراير 2014. CS1 maint: ref=harv (link)
  • Keplinger, M. L.; Suissa, L. W. (1968). "Toxicity of Fluorine Short-Term Inhalation". American Industrial Hygiene Association Journal. 29 (1): 10–18. doi:10.1080/00028896809342975. PMID 5667185.
  • Kern, S.; Hayward, J.; Roberts, S.; Richardson, J. W.; Rotella, F. J.; Soderholm, L.; Cort, B.; Tinkle, M.; West, M.; Hoisington, D.; Lander, G. A. (1994). "Temperature Variation of the Structural Parameters in Actinide Tetrafluorides". The Journal of Chemical Physics. 101 (11): 9333–9337. Bibcode:1994JChPh.101.9333K. doi:10.1063/1.467963.
  • Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. (2000). "A Stable Argon Compound". Nature. 406 (6798): 874–876. doi:10.1038/35022551. PMID 10972285.
  • King, D. E.; Malone, R.; Lilley, S. H. (2000). "New Classification and Update on the Quinolone Antibiotics". American Family Physician. 61 (9): 2741–2748. PMID 10821154. اطلع عليه بتاريخ 08 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Kirsch, Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN . CS1 maint: ref=harv (link)
  • Kissa, Erik (2001). Fluorinated Surfactants and Repellents (الطبعة 2nd). New York: Marcel Dekker. ISBN . CS1 maint: ref=harv (link)
  • Kuriakose, A. K.; Margrave, J. L. (1965). "Kinetics of the Reactions of Elemental Fluorine. IV. Fluorination of Graphite". Journal of Physical Chemistry. 69 (8): 2772–2775. doi:10.1021/j100892a049.
  • Lagow, R. J. (1970). (PDF) (PhD thesis, Rice University, TX). Ann Arbor: UMI. CS1 maint: ref=harv (link)
  • Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. (2007). "Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings" (PDF). Toxicological Sciences. 99 (2): 366–394. doi:10.1093/toxsci/kfm128. PMID 17519394.
  • Lewars, Errol G. (2008). . Dordrecht: Springer. ISBN . CS1 maint: ref=harv (link)
  • Lide, David R. (2004). Handbook of Chemistry and Physics (الطبعة 84th). Boca Raton: CRC Press. ISBN . CS1 maint: ref=harv (link)
  • Lidin, R.; Molochko, V.A.; Andreeva, L.L. (2000). Химические свойства неорганических веществ [Chemical Properties of Inorganic Substances] (باللغة الروسية). Moscow: Khimiya. ISBN . CS1 maint: ref=harv (link)
  • Liteplo, R.; Gomes, R.; Howe, P.; Malcolm, H. (2002). . Geneva: United Nations Environment Programme; International Labour Organization; World Health Organization. ISBN . اطلع عليه بتاريخ 14 أكتوبر 2013.
  • Lusty, P. A. J.; Brown, T. J.; Ward, J.; Bloomfield, S. (2008). "The Need for Indigenous Fluorspar Production in England". British Geological Survey. اطلع عليه بتاريخ 13 أكتوبر 2013.
  • Mackay, Kenneth Malcolm; Mackay, Rosemary Ann; Henderson, W. (2002). Introduction to Modern Inorganic Chemistry (الطبعة 6th). Cheltenham: Nelson Thornes. ISBN . CS1 maint: ref=harv (link)
  • Macomber, Roger (1996). Organic chemistry. 1. Sausalito: University Science Books. ISBN . CS1 maint: ref=harv (link)
  • Marggraf, Andreas Sigismun (1770). "Observation concernant une volatilisation remarquable d'une partie de l'espece de pierre, à laquelle on donne les noms de flosse, flüsse, flus-spaht, et aussi celui d'hesperos; laquelle volatilisation a été effectuée au moyen des acides" [Observation of a remarkable volatilization of part of a type of stone to which one gives the name flosse, flüsse, flus-spaht, as well as that of hesperos; which volatilization was effected by means of acids]. Mémoires de l'Académie royale des sciences et belles-lettres (باللغة الفرنسية). XXIV: 3–11. CS1 maint: ref=harv (link)
  • Martin, John W., المحرر (2007). Concise Encyclopedia of the Structure of Materials. Oxford and Amsterdam: Elsevier. ISBN . CS1 maint: ref=harv (link)
  • Marya, C. M. (2011). A Textbook of Public Health Dentistry. New Delhi: Jaypee Brothers Medical Publishers. ISBN . CS1 maint: ref=harv (link)
  • Matsui, M (2006). "Fluorine-containing Dyes". In Kim, Sung-Hoon (المحرر). Functional dyes. Orlando: Academic Press. صفحات 257–266. ISBN . CS1 maint: ref=harv (link)
  • Meusinger, Reinhard; Chippendale, A. Margaret; Fairhurst, Shirley A. (2012). "Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy". In Ullmann, Franz (المحرر). Ullmann's Encyclopedia of Industrial Chemistry. 24. Weinheim: Wiley-VCH. صفحات 609–660. doi:10.1002/14356007.b05_471.
  • Meyer, Eugene (1977). Chemistry of Hazardous Materials. Englewood Cliffs: Prentice Hall. ISBN . CS1 maint: ref=harv (link)
  • Miller, M. Michael (2003a). "Fluorspar" (PDF). U.S. Geological Survey Minerals Yearbook. U.S. Geological Survey. صفحات 27.1–27.12. CS1 maint: ref=harv (link)
  • Miller, M. Michael (2003b). "Mineral Resource of the Month, Fluorspar" (PDF). U.S. Geological Survey. اطلع عليه بتاريخ 24 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Mitchell, E. Siobhan (2004). Antidepressants. New York: Chelsea House Publishers. ISBN . CS1 maint: ref=harv (link)
  • Moeller, T.; Bailar, J. C.; Kleinberg (1980). Chemistry, with Inorganic Qualitative Analysis (الطبعة 3rd). New York: Academic Press. ISBN . CS1 maint: ref=harv (link)
  • Moissan, Henri (1886). "Action d'un courant électrique sur l'acide fluorhydrique anhydre". Comptes rendus hebdomadaires des séances de l'Académie des sciences (باللغة الفرنسية). 102: 1543–1544. اطلع عليه بتاريخ 09 أكتوبر 2013. CS1 maint: ref=harv (link)
  • McCoy, M. (2007). "SURVEY Market Challenges Dim the Confidence of the World's Chemical CEOs". Chemical & Engineering News. 85 (23): 11. doi:10.1021/cen-v085n023.p011a.
  • Moore, John W.; Stanitski, Conrad L.; Jurs, Peter C. (2010). Principles of Chemistry: The Molecular Science. Belmont: Brooks/Cole. ISBN . CS1 maint: ref=harv (link)
  • Morrow, S. I.; Perry, D. D.; Cohen, M. S. (1959). "The Formation of Dinitrogen Tetrafluoride in the Reaction of Fluorine and Ammonia". Journal of the American Chemical Society. 81 (23): 6338–6339. doi:10.1021/ja01532a066.
  • Müller, Peter (2009). "5.067 Crystal Structure Refinement" (PDF). Cambridge: MIT OpenCourseWare. اطلع عليه بتاريخ 13 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Murphy, C. D.; Schaffrath, C.; O'Hagan, D. (2003). "Fluorinated Natural Products: The Biosynthesis of Fluoroacetate and 4-Fluorothreonine in Streptomyces cattleya". Chemosphere. 52 (2): 455–461. doi:10.1016/S0045-6535(03)00191-7. PMID 12738270.
  • Murthy, C. Parameshwara; Mehdi Ali, S. F.; Ashok, D. (1995). University Chemistry. I. New Delhi: New Age International. ISBN . CS1 maint: ref=harv (link)
  • National Health and Medical Research Council (2007). "A Systematic Review of the Efficacy and Safety of Fluoridation, Part A: Review of Methodology and Results" (PDF). Canberra: Australian Government. ISBN . اطلع عليه بتاريخ 08 أكتوبر 2013.
  • The National Institute for Occupational Safety and Health (1994). "Fluorine". Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs). اطلع عليه بتاريخ 15 يناير 2014.
  • The National Institute for Occupational Safety and Health (1994). "Chlorine". Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs). اطلع عليه بتاريخ 13 يوليو2014.
  • National Nuclear Data Center. "NuDat 2.1 Database". Brookhaven National Laboratory. اطلع عليه بتاريخ 25 أكتوبر 2013.
  • National Oceanic and Atmospheric Administration. "UN/NA 1045 (United Nations/North America Fluorine Data Sheet)". اطلع عليه بتاريخ 15 أكتوبر 2013.
  • Navarrini, Walter; Venturini, Francesco; Tortelli, Vito; Basak, Soubir; Pimparkar, Ketan P.; Adamo, Andrea; Jensen, Klavs F. (2012). "Direct fluorination of carbon monoxide in microreactors". Journal of Fluorine Chemistry. 142: 19. doi:10.1016/j.jfluchem.2012.06.006.
  • Nelson, Eugene W. (1947). Bad Man' of The Elements". Popular Mechanics. 88 (2): 106–108, 260. CS1 maint: ref=harv (link)
  • Nelson, J. M.; Chiller, T. M.; Powers, J. H.; Angulo, F. J. (2007). "Food Safety: Fluoroquinolone‐ResistantCampylobacterSpecies and the Withdrawal of Fluoroquinolones from Use in Poultry: A Public Health Success Story" (PDF). Clinical Infectious Diseases. 44 (7): 977–980. doi:10.1086/512369. PMID 17342653.
  • Nielsen, Forrest H. (2009). "Micronutrients in Parenteral Nutrition: Boron, Silicon, and Fluoride". Gastroenterology. 137 (5): S55–60. doi:10.1053/j.gastro.2009.07.072. PMID 19874950.
  • Norwood, Charles J.; Fohs, F. Julius (1907). . Kentucky Geological Survey. CS1 maint: ref=harv (link)
  • Noury, S.; Silvi, B.; Gillespie, R. J. (2002). "Chemical Bonding in Hypervalent Molecules: Is the Octet Rule Relevant?" (PDF). Inorganic Chemistry. 41 (8): 2164–2172. doi:10.1021/ic011003v. PMID 11952370. اطلع عليه بتاريخ 23 مايو2012.
  • O'Hagan, D. (2008). "Understanding Organofluorine Chemistry. An Introduction to the C–F Bond". Chemical Society Reviews. 37 (2): 308–319. doi:10.1039/b711844a. PMID 18197347.
  • O'Hagan, D.; Schaffrath, C.; Cobb, S. L.; Hamilton, J. T. G.; Murphy, C. D. (2002). "Biochemistry: Biosynthesis of an Organofluorine Molecule". Nature. 416 (6878): 279. Bibcode:2002Natur.416..279O. doi:10.1038/416279a. PMID 11907567.
  • Okada, T.; Xie, G.; Gorseth, O.; Kjelstrup, S.; Nakamura, N.; Arimura, T. (1998). "Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes". Electrochimica Acta. 43 (24): 3741–3747. doi:10.1016/S0013-4686(98)00132-7.
  • Okazoe, T. (2009). "Overview on the History of Organofluorine Chemistry from the Viewpoint of Material Industry". Proceedings of the Japan Academy, Series B. 85 (8): 276–289. Bibcode:2009PJAB...85..276O. doi:10.2183/pjab.85.276.
  • Olivares, M.; Uauy, R. (2004). Essential Nutrients in Drinking Water (Draft) (PDF) (Report). World Health Organization (WHO). اطلع عليه بتاريخ 14 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Parente, Luca (2001). "The Development of Synthetic Glucocorticoids". In Goulding, Nicolas J.; Flower, Rod J. (المحررون). Glucocorticoids. Basel: Birkhäuser. صفحات 35–53. ISBN . CS1 maint: ref=harv (link)
  • Partington, J. R. (1923). "The early history of hydrofluoric acid". Memoirs and Proceedings of the Manchester Literary and Philosophical Society. 67 (6): 73–87. CS1 maint: ref=harv (link)
  • Patnaik, Pradyot (2007). A Comprehensive Guide to the Hazardous Properties of Chemical Substances (الطبعة 3rd). Hoboken: John Wiley & Sons. ISBN . CS1 maint: ref=harv (link)
  • Pauling, Linus (1960). The Nature of the Chemical Bond (الطبعة 3rd). Ithaca: Cornell University Press. ISBN . CS1 maint: ref=harv (link)
  • Pauling, L.; Keaveny, I.; Robinson, A. B. (1970). "The Crystal Structure of α-Fluorine". Journal of Solid State Chemistry. 2 (2): 225–227. Bibcode:1970JSSCh...2..225P. doi:10.1016/0022-4596(70)90074-5.
  • Perry, Dale L. (2011). Handbook of Inorganic Compounds (الطبعة 2nd). Boca Raton: CRC Press. ISBN . CS1 maint: ref=harv (link)
  • Pitzer, K. S. (1975). "Fluorides of Radon and Element 118". Journal of the Chemical Society, Chemical Communications (18): 760b–761. doi:10.1039/C3975000760B.
  • Pitzer, Kenneth S., المحرر (1993). Molecular Structure and Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer. Singapore: World Scientific Publishing. ISBN . CS1 maint: ref=harv (link)
  • Pizzo, G.; Piscopo, M. R.; Pizzo, I.; Giuliana, G. (2007). "Community Water Fluoridation and Caries Prevention: A Critical Review" (PDF). Clinical Oral Investigations. 11 (3): 189–193. doi:10.1007/s00784-007-0111-6. PMID 17333303.
  • Posner, Stefan (2011). "Perfluorinated Compounds: Occurrence and Uses in Products". In Knepper, Thomas P.; Large, Frank T. (المحررون). Polyfluorinated Chemicals and Transformation Products. Heidelberg: Springer Science+Business Media. صفحات 25–40. ISBN . CS1 maint: ref=harv (link)
  • Posner, Stefan; et al. (2013). Per- and Polyfluorinated Substances in the Nordic Countries: Use Occurrence and Toxicology. Copenhagen: Nordic Council of Ministers. doi:10.6027/TN2013-542. ISBN .
  • Preskorn, Sheldon H. (1996). Clinical Pharmacology of Selective Serotonin Reuptake Inhibitors. Caddo: Professional Communications. ISBN . CS1 maint: ref=harv (link)
  • Principe, Lawrence M. (2012). The Secrets of Alchemy. Chicago: University of Chicago Press. ISBN . CS1 maint: ref=harv (link)
  • Proudfoot, A. T.; Bradberry, S. M.; Vale, J. A. (2006). "Sodium Fluoroacetate Poisoning". Toxicological Reviews. 25 (4): 213–219. doi:10.2165/00139709-200625040-00002. PMID 17288493.
  • PRWeb (28 October 2010). "Global Fluorochemicals Market to Exceed 2.6 Million Tons by 2015, According to a New Report by Global Industry Analysts, Inc". prweb.com. اطلع عليه بتاريخ 24 أكتوبر 2013. CS1 maint: ref=harv (link)
  • PRWeb (23 February 2012). "Global Fluorspar Market to Reach 5.94 Million Metric Tons by 2017, According to New Report by Global Industry Analysts, Inc". prweb.com. اطلع عليه بتاريخ 24 أكتوبر 2013. CS1 maint: ref=harv (link)
  • PRWeb (7 April 2013). "Fluoropolymers Market is Poised to Grow at a CAGR of 6.5% & to Reach $9,446.0 Million by 2016 – New report by MarketsandMarkets". prweb.com. اطلع عليه بتاريخ 24 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Pyykkö, Pekka; Atsumi, Michiko (2009). "Molecular Double-Bond Covalent Radii for Elements Li–E112". Chemistry: A European Journal. 15 (46): 12770. doi:10.1002/chem.200901472.
  • Raghavan, P. S. (1998). Concepts and Problems in Inorganic Chemistry. Delhi: Discovery Publishing House. ISBN . CS1 maint: ref=harv (link)
  • Raj, P. Prithvi; Erdine, Serdar (2012). Pain-Relieving Procedures: The Illustrated Guide. Chichester: John Wiley & Sons. ISBN . CS1 maint: ref=harv (link)
  • Ramkumar, Jayshree (2012). "Nafion Perfluorosulphonate Membrane: Unique Properties and Various Applications". In Banerjee, S.; Tyagi, A. K. (المحررون). Functional Materials: Preparation, Processing and Applications. London and Waltham: Elsevier. صفحات 549–578. ISBN . CS1 maint: ref=harv (link)
  • Reddy, D. (2009). "Neurology of Endemic Skeletal Fluorosis". Neurology India. 57 (1): 7–12. doi:10.4103/0028-3886.48793. PMID 19305069.
  • Renda, Agostino; Fenner, Yeshe; Gibson, Brad K.; Karakas, Amanda I.; Lattanzio, John C.; Campbell, Simon; Chieffi, Alessandro; Cunha, Katia; Smith, Verne V. (2004). "On the origin of fluorine in the Milky Way". Monthly Notices of the Royal Astronomical Society. 354 (2): 575. doi:10.1111/j.1365-2966.2004.08215.x.
  • Renner, R. (2006). "The Long and the Short of Perfluorinated Replacements". Environmental Science & Technology. 40 (1): 12–13. Bibcode:2006EnST...40...12R. doi:10.1021/es062612a. PMID 16433328.
  • Rhoades, David Walter (2008). Broadband Dielectric Spectroscopy Studies of Nafion (PhD dissertation, University of Southern Mississippi, MS). Ann Arbor: ProQuest. ISBN . CS1 maint: ref=harv (link)
  • Richter, M.; Hahn, O.; Fuchs, R. (2001). "Purple Fluorite: A Little Known Artists' Pigment and Its Use in Late Gothic and Early Renaissance Painting in Northern Europe". Studies in Conservation. 46 (1): 1–13. doi:10.1179/sic.2001.46.1.1. JSTOR 1506878. CS1 maint: ref=harv (link)
  • Riedel, Sebastian; Kaupp, Martin (2009). "The highest oxidation states of the transition metal elements". Coordination Chemistry Reviews. 253 (5–6): 606. doi:10.1016/j.ccr.2008.07.014.
  • Ripa, L. W. (2008). "A Half-century of Community Water Fluoridation in the United States: Review and Commentary" (PDF). Journal of Public Health Dentistry. 53 (1): 17–44. doi:10.1111/j.1752-7325.1993.tb02666.x. PMID 8474047.
  • Roblin, I.; Urban, M.; Flicoteau, D.; Martin, C.; Pradeau, D. (2006). "Topical Treatment of Experimental Hydrofluoric Acid Skin Burns by 2.5% Calcium Gluconate". Journal of Burn Care & Research. 27 (6): 889–894. doi:10.1097/01.BCR.0000245767.54278.09. PMID 17091088.
  • Salager, Jean-Louis (2002). (PDF). Laboratory of Formulation, Interfaces, Rheology, and Processes, Universidad de los Andes. اطلع عليه بتاريخ 13 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Sandford, Graham (2000). "Organofluorine Chemistry". Philosophical Transactions. 358 (1766): 455–471. doi:10.1098/rsta.2000.0541. CS1 maint: ref=harv (link)
  • Sarkar, S. (2008). "Artificial Blood". Indian Journal of Critical Care Medicine. 12 (3): 140–144. doi:10.4103/0972-5229.43685. PMC 2738310. PMID 19742251.
  • Scheele, Carl Wilhelm (1771). "Undersŏkning om fluss-spat och dess syra" [Investigation of Fluorite and Its Acid]. Kungliga Svenska Vetenskapsademiens Handlingar [Proceedings of the Royal Swedish Academy of Science] (باللغة السويدية). 32: 129–138. CS1 maint: ref=harv (link)
  • Schimmeyer, S. (2002). "The Search for a Blood Substitute". Illumin. Columbia: University of Southern Carolina. 15 (1). اطلع عليه بتاريخ 15 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Schlöder, T.; Riedel, S. (2012). "Investigation of Heterodimeric and Homodimeric Radical Cations of the Series: [F2O2]+, [F2Cl2]+, [Cl2O2]+, [F4]+, and [Cl4]+". RSC Advances. Royal Society of Chemistry. 2 (3): 876–881. doi:10.1039/C1RA00804H.
  • Schmedt Auf Der Günne, Jörn; Mangstl, Martin; Kraus, Florian (2012). "Occurrence of Difluorine F2in Nature-In Situ Proof and Quantification by NMR Spectroscopy". Angewandte Chemie International Edition. 51 (31): 7847. doi:10.1002/anie.201203515.
  • Schmitz, A.; Kälicke, T.; Willkomm, P.; Grünwald, F.; Kandyba, J.; Schmitt, O. (2000). "Use of Fluorine-18 Fluoro-2-deoxy-D-glucose Positron Emission Tomography in Assessing the Process of Tuberculous Spondylitis" (PDF). Journal of Spinal Disorders. 13 (6): 541–544. doi:10.1097/00002517-200012000-00016. PMID 11132989. اطلع عليه بتاريخ 08 أكتوبر 2013.
  • Schulze-Makuch, D.; Irwin, L. N. (2008). Life in the Universe: Expectations and Constraints (الطبعة 2nd). Berlin: Springer-Verlag. ISBN . CS1 maint: ref=harv (link)
  • Schwarcz, Joseph A. (2004). The Fly in the Ointment: 70 Fascinating Commentaries on the Science of Everyday Life. Toronto: ECW Press. ISBN .
  • Senning, A. (2007). Elsevier's Dictionary of Chemoetymology: The Whies and Whences of Chemical Nomenclature and Terminology. Amsterdam and Oxford: Elsevier. ISBN . CS1 maint: ref=harv (link)
  • Shaffer, T. H.; Wolfson, M. R.; Clark Jr, L. C. (1992). "Liquid Ventilation". Pediatric Pulmonology. 14 (2): 102–109. doi:10.1002/ppul.1950140208. PMID 1437347.
  • Shin, Richard D.; Silverberg, Mark A. (2013). "Fluoride Toxicity". Medscape. اطلع عليه بتاريخ 15 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Shriver, Duward; Atkins, Peter (2010). Solutions Manual for Inorganic Chemistry. New York: W. H. Freeman. ISBN . CS1 maint: ref=harv (link)
  • Shulman, J. D.; Wells, L. M. (1997). "Acute Fluoride Toxicity from Ingesting Home-use Dental Products in Children, Birth toستة Years of Age". Journal of Public Health Dentistry. 57 (3): 150–158. doi:10.1111/j.1752-7325.1997.tb02966.x. PMID 9383753.
  • Siegemund, G. N.; Schwertfeger, W.; Feiring, A.; Smart, B.; Behr, F.; Vogel, H.; McKusick, B. (2000). "Fluorine Compounds, Organic". In Ullmann, Franz (المحرر). Ullmann's Encyclopedia of Industrial Chemistry. 15. Weinheim: Wiley-VCH. صفحات 443–494. doi:10.1002/14356007.a11_349. ISBN .
  • Slye, Orville M (2012). "Fire Extinguishing Agents". In Ullmann, Franz (المحرر). Ullmann's Encyclopedia of Industrial Chemistry. 15. Weinheim: Wiley-VCH. صفحات 1–11. doi:10.1002/14356007.a11_113.pub2.
  • Steenland, K.; Fletcher, T.; Savitz, D. A. (2010). "Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)". Environmental Health Perspectives. 118 (8): 1100–1108. doi:10.1289/ehp.0901827. PMC 2920088. PMID 20423814.
  • Stillman, John Maxson (December 1912). "Basil Valentine, A Seventeenth Century Hoax". Popular Science Monthly. 81. اطلع عليه بتاريخ 14 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Storer, Frank H. (1864). . Cambridge: Sever and Francis. CS1 maint: ref=harv (link)
  • Struble, M. D.; Scerba, M. T.; Siegler, M.; Lectka, T. (2013). "Evidence for a Symmetrical Fluoronium Ion in Solution". Science. 340 (6128): 57–60. doi:10.1126/science.1231247. PMID 23559245.
  • Swinson, Joel (June 2005). "Fluorine – A Vital Element in the Medicine Chest" (PDF). PharmaChem. Pharmaceutical Chemistry: 26–27. اطلع عليه بتاريخ 09 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Taber, Andrew (22 April 1999). "Dying to ride". Salon. اطلع عليه بتاريخ 18 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Tanner Industries (January 2011). "Anhydrous Ammonia: (MSDS) Material Safety Data Sheet". tannerind.com. اطلع عليه بتاريخ 24 أكتوبر 2013. CS1 maint: ref=harv (link)
  • Theodoridis, George (2006). "Fluorine-Containing Agrochemicals: An Overview of Recent Developments". In Tressaud, Alain (المحرر). Fluorine and the Environment : Agrochemicals, Archaeology, Green Chemistry & Water. Amsterdam and Oxford: Elsevier. صفحات 121–176. ISBN . CS1 maint: ref=harv (link)
  • Toon, Richard (2011). "Fluorine, An Obsession with a Tragic Past" (PDF). Education in Chemistry. 48 (5): 148–151. CS1 maint: ref=harv (link)
  • Transparency Market Research (17 May 2013). "Fluorochemicals Market is Expected to Reach USD 21.5 Billion Globally by 2018: Transparency Market Research". Transparency Market Research Blog. اطلع عليه بتاريخ 15 أكتوبر 2013.
  • Ullmann, Fritz (2008). Ullmann's Fibers (2 volumes). Weinheim: Wiley-VCH. ISBN . CS1 maint: ref=harv (link)
  • United States Environmental Protection Agency (1996). "R.E.D. Facts: Trifluralin" (PDF). اطلع عليه بتاريخ 17 أكتوبر 2013.
  • United States Environmental Protection Agency (2012). "Emerging Contaminants – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA)" (PDF). اطلع عليه بتاريخ 04 نوفمبر 2013.
  • United States Environmental Protection Agency (2013a). "Class I Ozone-depleting Substances". اطلع عليه بتاريخ 15 أكتوبر 2013.
  • United States Environmental Protection Agency (2013b). "Phaseout of HCFCs (Class II Ozone-Depleting Substances)". اطلع عليه بتاريخ 15 أكتوبر 2013.
  • Viel, Claude; Goldwhite, Harold (1993). "1906 Nobel Laureate: Henri Moissan, 1852–1907". In Laylin, K. James (المحرر). Nobel Laureates in Chemistry, 1901–1992. Washington: American Chemical Society; Chemical Heritage Foundation. صفحات 35–41. ISBN . CS1 maint: ref=harv (link)
  • Vigoureux, P. (1961). "The Gyromagnetic Ratio of the Proton". Contemporary Physics. 2 (5): 360–366. doi:10.1080/00107516108205282. CS1 maint: ref=harv (link)
  • Villalba, Gara; Ayres, Robert U.; Schroder, Hans (2008). "Accounting for Fluorine: Production, Use, and Loss". Journal of Industrial Ecology. 11: 85. doi:10.1162/jiec.2007.1075.
  • Walsh, Kenneth A. (2009). Beryllium Chemistry and Processing. Materials Park: ASM International. ISBN . CS1 maint: ref=harv (link)
  • Walter, P. (2013). "Honeywell Invests $300m in Green Refrigerant". Chemistry World. CS1 maint: ref=harv (link)
  • Weeks, M. E. (1932). "The Discovery of the Elements. XVII. The Halogen Family". Journal of Chemical Education. 9 (11): 1915–1939. Bibcode:1932JChEd...9.1915W. doi:10.1021/ed009p1915.
  • Werner, N. L.; Hecker, M. T.; Sethi, A. K.; Donskey, C. J. (2011). "Unnecessary use of Fluoroquinolone Antibiotics in Hospitalized Patients". BMC Infectious Diseases. 11: 187–193. doi:10.1186/1471-2334-11-187. PMC 3145580. PMID 21729289.
  • Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN . CS1 maint: ref=harv (link)
  • Willey, Ronald R. (2007). Practical Equipment, Materials, and Processes for Optical Thin Films. Charlevoix: Willey Optical. ISBN . CS1 maint: ref=harv (link)
  • Yaws, Carl L.; Braker, William (2001). "Fluorine". Matheson Gas Data Book (الطبعة 7th). Parsippany: Matheson Tri-Gas. ISBN . CS1 maint: ref=harv (link)
  • Yeung, C. A. (2008). "A Systematic Review of the Efficacy and Safety of Fluoridation". Evidence-Based Dentistry. 9 (2): 39–43. doi:10.1038/sj.ebd.6400578. PMID 18584000.
  • Young, David A. (1975). Phase Diagrams of the Elements (Report). Lawrence Livermore Laboratory. اطلع عليه بتاريخعشرة يونيو2011. CS1 maint: ref=harv (link)
  • Zareitalabad, P.; Siemens, J.; Hamer, M.; Amelung, W. (2013). "Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients". Chemosphere. 91 (6): 725. doi:10.1016/j.chemosphere.2013.02.024. PMID 23498059.
  • Zorich, Robert (1991). Handbook of Quality Integrated Circuit Manufacturing. San Diego: Academic Press. ISBN . CS1 maint: ref=harv (link)

وصلات خارجية

فيديوخارجي
تفاعلات مختلفة لعنصر الفلور على يوتيوب
تفاعل الفلور مع السيزيوم على يوتيوب
تاريخ النشر: 2020-06-01 18:56:18
التصنيفات: فلور, عناصر كيميائية, غازات صناعية, لافلزات ثنائية الذرة, مؤكسدات, هالوجينات, قالب أرشيف الإنترنت بوصلات واي باك, CS1 maint: ref=harv, جميع المقالات ذات الوصلات الخارجية المكسورة, مقالات ذات وصلات خارجية مكسورة منذ مايو 2019, صيانة CS1: أسماء متعددة: قائمة المؤلفون, الصفحات التي تستخدم وصلات ISBN السحرية, صفحات بها مراجع بالفرنسية (fr), أخطاء CS1: دورية مفقودة, صفحات بها مراجع بالروسية (ru), صفحات بها مراجع بالسويدية (sv), صفحات تستخدم خاصية P244, صفحات تستخدم خاصية P227, صفحات تستخدم خاصية P268, صفحات بها بيانات ويكي بيانات, صفحات تستخدم خاصية P1931, صفحات تستخدم خاصية P662, صفحات تستخدم خاصية P657, صفحات تستخدم خاصية P231, صفحات تستخدم خاصية P1578, معرفات مركب كيميائي, بوابة العناصر الكيميائية/مقالات متعلقة, بوابة الكيمياء/مقالات متعلقة, جميع المقالات التي تستخدم شريط بوابات, صفحات لا تقبل التصنيف المعادل, مقالات مختارة, قالب تصنيف كومنز بوصلة كما في ويكي بيانات

مقالات أخرى من الموسوعة

سحابة الكلمات المفتاحية، مما يبحث عنه الزوار في كشاف:

آخر الأخبار حول العالم

بعد ثلاثية رادس.. 8 أرقام قياسية حققها الأهلى بعد الفوز على الترجى

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:20:45
مستوى الصحة: 48% الأهمية: 67%

طارق الشيخ يستعد لطرح أغنية "ديو" برفقة وسام هلال بعنوان "حد سَكه"

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:20:34
مستوى الصحة: 49% الأهمية: 50%

تدفقات سياحية من مختلف الجنسيات على مدينة مرسى علم

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:20:40
مستوى الصحة: 53% الأهمية: 62%

السودان يرفض جلسة لـ"حقوق الإنسان" حول الأوضاع في البلاد

المصدر: العربية - السعودية التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:17:14
مستوى الصحة: 89% الأهمية: 85%

كولر: لم أكن سعيدا في نصف ساعة أمام الترجي

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2023-05-13 03:19:15
مستوى الصحة: 34% الأهمية: 37%

حظك اليوم السبت 13 مايو 2023 لمواليد الأبراج المائية

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:20:36
مستوى الصحة: 51% الأهمية: 60%

وائل جمعة ينتقد لاعبى الأهلى رغم الفوز الكبير على الترجى

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:20:45
مستوى الصحة: 46% الأهمية: 66%

طارق فهمى: مصر سيكون لها دور هام فى إعادة تأهيل الجيش السورى

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:20:38
مستوى الصحة: 46% الأهمية: 70%

رابط نتيجة الصف الثانى الإعدادى 2023 بالاسم فقط

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:20:37
مستوى الصحة: 46% الأهمية: 51%

حظك اليوم السبت 13 مايو 2023 لمواليد الأبراج الترابية

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:20:38
مستوى الصحة: 45% الأهمية: 58%

كولر عن الترجي: الأهلي يخشى سيناريوهات ريال مدريد وليفربول

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2023-05-13 03:19:14
مستوى الصحة: 35% الأهمية: 37%

بيان لـ"كتائب القسام" تعقيبا على اغتيال الحسني

المصدر: RT Arabic - روسيا التصنيف: سياسة
تاريخ الخبر: 2023-05-13 03:16:51
مستوى الصحة: 85% الأهمية: 94%

كولر: معلول لا غنى عنه.. سعداء بوجود لاعب بقيمته في الأهلي

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2023-05-13 03:19:17
مستوى الصحة: 36% الأهمية: 50%

تحميل تطبيق المنصة العربية