أورانوس

عودة للموسوعة

أورانوس (رمزه ) هوسابع الكواكب بعدًا عن الشمس، وثالث أضخم كواكب المجموعة الشمسية، والرابع من حيث الكتلة. سمي على اسم الإله أورانوس (باليونانية القديمة: Οὐρανός) في الميثولوجيا الإغريقية. لم يتم تمييزه من قبل الحضارات القديمة على أنه كوكب رغم أنه مرئي بالعين المجردة، نظرًا لبهوته وبطء دورانه في مداره. أعرب وليام هرشل عن اكتشافه في 13 آذار/مارس من سنة 1781، موسعًا بذلك حدود الكواكب المعروفة لأول مرة في التاريخ. كما كان أورانوس أول كوكب يتم اكتشافة من خلال التلسكوب.

يشابه هجريب أورانوس هجريب كوكب نبتون، وكلاهما ذوهجريب مختلف عن العملاقين الغازيين الآخرين (المشتري وزحل)، لذلك يصنفها الفلكيون أحيانا تحت تصنيف عملاق جليدي. تكوين الغلاف الجوي يشابه هجريب غلاف كلاً من المشتري وزحل، حيث يهجرب بشكل أساسي من الهيدروجين والهيليوم، لكنه يحتوي على نسبة جليد أعلى مثل جليد الماء والميثان والأمونيا مع وجود بعض الآثار للهيدروكربونات. يعتبر غلافه الجوي الأبرد في المجموعة الشمسية، مع متوسط حرارة يبلغ 49 كلفن(-224 درجة مئوية). ويتألف من بنية سحاب معقدة، ويعتقد حتى الماء يشكل الغيوم السفلى والميثان يشكل طبقة الغيوم الأعلى في الغلاف. في حين يتألف أورانوس من الصخور والجليد.

يملك أورانوس مثل باقي الكواكب العملاقة نظام حلقات وغلاف مغناطيسي وعدد كبير من الأقمار. أكثر ما يميز أورانوس عن غيره من الكواكب هوحتى محور دورانه مائل إلى الجانب بشكل كبير، تقريبا مع مستوى دورانه حول الشمس، بحيث يتموضع قطباه الشمالي والجنوبي في مكان تموضع خط الاستواء لمعظم الكواكب. ترى حلقات الكوكب من الأرض أحيانا كهدف الرماية، وتدور أقماره حوله باتجاه عقارب الساعة. أظهرت صور ملتقطة بواسطة المسبار فوياجر 2 سنة 1986 بعض التضاريس للكوكب بالضوء المرئي بدون أي تاثيرات لمجموعات الغيوم أوالعواصف مثل باقي العمالقة الغازية. أظهر الرصد الأرضي تغيرات مناخية فصلية، وزيادة في تغيرات الطقس في السنوات الأخيرة. وخاصة عندما يقترب أورانوس من الاعتدالين، فيمكن حتى تصل سرعة الرياح 250 مترًا في الثانية.

تم استكشاف أورانوس عن طريق رحلة واحدة فقط تابعة لوكالة ناسا الأمريكية، هي رحلة مسبار فوياجر 2، الذي اقترب من الكوكب إلى أقصى درجة بتاريخ 24 يناير سنة 1986، ومنذ ذلك الحين لم يتم إرسال أي رحلة أخرى، ولم يتم التخطيط لإرسال أي مسبار حديث في القريب العاجل، على الرغم من حتى عدد من الرحلات قد تم اقتراحها للمستقبل، إلا حتى أي منها لم يتم الموافقة عليه بعد. قام فوياجر 2 بعدد من الاكتشافات الهامة، إذ أظهرت صوره وجودعشرة أقمار جديدة لم تكن معروفة من قبل، بالإضافة إلى حلقتين إضافيتين، كما قام المسبار بدراسة الغلاف الجوي البارد لأورانوس وتصوير أكبر خمس أقمار تابعة له، كاشفًا بذلك طبيعة سطحها المغطى بالفوهات الصدمية والوديان العظيمة.

من الرحلات التي اقترح إرسالها في المستقبل: ما اقترحه فهماء مختبر مولارد لعلوم الفضاء في المملكة المتحدة، على فهماء الناسا، بأن يرسلوا مسبارًا مشهجرًا هو"مستكشف أورانوس" (باللاتينية: Uranus Pathfinder)، إلى الكوكب المذكور في سنة 2022. ويعتبر هذا المشروع من المشاريع التابعة للفئة الوسطى (بالإنجليزية: M-class)‏، وقد رُفع تقرير بشأنه إلى وكالة الفضاء الأوروبية في شهر ديسمبر من عام 2010، وسقط عليه 120 عالمًا ينتمون لجنسيات مختلفة، وقدّرت تكلفته بحوالي 470 مليون يورو. كذلك هناك مشروع آخر يهدف إلى إرسال مركبة ذات طاقة دفع نووية في شهر أبريل من عام 2021، لتصل إلى أورانوس بعد 17 سنة من إطلاقها، وتقوم بدراسة الكوكب طيلة سنتين على الأقل.

نظرة تاريخية

اكتشافه

رصد أورانوس في عدة مناسبات قبل اكتشافه ككوكب، لكنه كان يعتقد خطأ بأنه نجم. أول الإنضمامات الرصدية له كانت سنة 1690 عندما رصد الفلكي جون فلامستيد أورانوس بما لا يقل عن ست مرات، وصنفه كنجم في كوكبة الثور وسماه بالثور 34. رصد الفلكي الفرنسي بيير شارل لومونييه أورانوس بما لا يقل عن اثنتي عشرة مرة بين عاميّ 1750 و1769 بما فيها خلال أربع ليالي متتالية.

نسخة طبق الأصل عن المقراب الذي رُصد أورانوس باستخدامه، عن طريق ويليام هيرشل.

رصد ويليام هيرشل أورانوس في 13 آذار/مارس عام 1781 من حديقة منزله الواقع في سومرست، لكنه سجل في البداية (26 نيسان/أبريل) بأنه رصد مذنبًا، قبل حتى ينشر في جريدته أنه رصد في الربع الأول بالقرب من نجم زيتا الثور جرم يعتقد أنه إما سديم نجمي أومذنب.. ولكنه عندما عرض اكتشافه على الجمعية الملكية شرح أنه اكتشف مذنبًا، بسبب تحركه من مكانه لكن يمكن مقارنته ضمنياً بكوكب: وقد نطق:

الطاقة التي طبقتها عند أول رصد للمذنب وصلت إلى 227. ومن خبرتي أعهد حتى قطر النجوم الثابتة لا يتناسب مع هذه الطاقة الضخمة، مثل الكواكب. لذلك طبقت طاقة من 460 إلى 932 لأجد حتى قطر المذنب يتناسب مع الطاقة، بينما قطر النجوم لا يزداد بنفس النسبة مع ازدياد الطاقة، وعلاوة على ذلك يظهر المذنب أضخم بكثير من ضوئه المستقبل منه. ويبدوضبابياً غير واضح المعالم بالرغم من جميع هذه الطاقة. بينما تحافظ النجوم على بريقها وتميزها، وعهدت ذلك من خلال آلاف الرصود وفهمت أنها ستحافظ. وكتلخيص لما تجاوز فإن مذنبًا قد اكتشف من خلال هذا الرصد.

أخطر هيرشل نيفيل ماسكيليني بملاحظته، ليتلقى رسالة من ماسكيليني في 23 نيسان/أبريل اتى فيها: «لا أعهد ما هو، يظهر وكأنه كوكب عادي يدور في مدار دائري تقريباً حول الشمس، وكمذنب يتحرك بشكل بتر ناقص شاذ، ولم أرى أي هالة أوذيل له".»

بينما واصل هيرشل وصف الجرم الذي رصده بحذر على أنه مذنب، بدأ فلكيون آخرون وصف هذا الجرم من منظور آخر. فكان العالم الروسي أندريس جون ليكسيل أول من حسب مدار هذا الجرم الجديد، ونظراً لمداره القريب من الدائري ففرض أنه كوكب بدلأ عن حتىقد يكون مذنب. كما حتى الفلكي الألماني يوهان إليرت بودي تسقط حتىقد يكون كوكب مجهول يدور في مدار أبعد من مدار زحل. وسرعان ما بدأ توافق عالمي على قبول هذا الجرم على أنه كوكب جديد. وفي سنة 1783 اعترف هيرشل بالحقيقة.

التسمية

ويليام هيرشل، مكتشف كوكب أورانوس.

طلب ماسكيليني من هيرشل حتى يطلق اسم على الكوكب الجديد الذي يعود الفضل إليه في اكتشافه. وبناءً على هذا الطلب أطلق هيرشيل اسم "جورجيوم سيدوم" (باللاتينية: Georgium Sidus) أي نجمة جورج على شرف الملك جورج الثالث. لكن هذا الاسم الذي اقترحه هيرشل لم يكن ذوشعبية خارج بريطانيا، وسرعان ما اقترحت أسماء بديلة. فاقترح الفلكي الفرنسي جيروم لالاند تسميته باسم هيرشل تكريماً لويليام هيرشيل، في حين اقترح الفلكي السويدي إريك بروسبيرين تسميته نبتون وقد تلقى هذا الاسم دعماً من فلكيين آخرين الذين أحبوا الفكرة احتفالاً بفوز البحرية الملكية في حرب الاستقلال الأمريكية وتسمية الكوكب باسم نبتون جورج الثالث أونبتون بريطانيا العظمى. في حين اختار يوهان بودي اسم أورانوس وهواسم إله السماء وفق الميثولوجيا الإغريقية، وقد جادل بودي ذلك بأن ساتورن (الاسم اللاتيني لزحل) هووالد جوبيتر وفق الميثولوجيا اليونانية، وبناءً عليه يجب حتىقد يكون الكوكب الأبعد من زحل هووالد ساتورن.

في سنة 1789 أطلق زميل بودي في الأكاديمية الفرنسية للعلوم مارتن كلابروث، أطلق اسم اليورانيوم على العنصر الجديد الذي قد إكتشفه مشتقاً إياه من اسم أورانوس كدعم لخيار بودي. وبمرور الوقت أصبح اقتراح بودي أكثر شعبية، وأصبح عالمياً عندما اعتمدت إحدى المؤسسات الهيدروجغرافية الملكية البريطانية هذا الاسم ونقلت اسم "جورجيوم سيدوس" إلى اسم أورانوس.

المدار والدوران

يدور أورانوس حول الشمس مرة جميع 84 سنة أرضية. ويصل معدّل بعده عن الشمس إلى حوالي ثلاثة مليارات كم (حوالي 20 وحدة فلكية).
صورة زائفة الألوان من سنة 1998 ملتقطة بالأشعة القريبة من تحت الحمراء بواسطة مرصد هابل وتظهر حزم الغيوم وحلقات أورانوس والأقمار الطبيعية.

يتم أورانوس دورة واحدة حول الشمس جميع 84 سنة أرضية. متوسط بعده عن الشمس يبلغ ثلاثة مليارات كم. تصل كثافة الضوء الشمسي على سطح أورانوس إلى 1/400 مما هي على سطح الأرض. حسبت عناصره المدارية لأول مرة من قبل العالم بيير لابلاس سنة 1783. بمرور الوقت بدأت تظهر التناقضات بين التنبؤات الحسابية والملاحظات الرصدية. أقترح جون كوش آدامز سنة 1841 حتى سبب الاختلاف هذا راجع إلى تأثره بجاذبية كوكب غير مرئي. في سنة 1845 بدأ أوربان لوفيريي بحثا مستقلا حول مدار أورانوس. رصد يوهان جدفريد جال كوكب حديث دعي فيما بعد نبتون، وكان قريبا جدا من المكان الذي تنبأ فيه لوفيريي.

تبلغ فترة الدوران الذاتي لأورانوس 17 ساعة و14 دقيقة. ومثل باقي الكواكب العملاقة تظهر ضمن الغلاف الجوي رياح قوية باتجاه الدوران، كما يظهر على بعض خطوط العرض، مثلاً على بعد ثليين من خط الاستواء باتجاه القطب الجنوبي، تظهر ملامح واضحة لتحرك الغلاف الجوي بشكل أسرع جاعلةً من سرعة الدوران الكلية أقل من 14 ساعة.

ميلان المحور

يبلغ الميل المحوري 97.77 درجة وبالتالي فإن محور الدوران يوازي مستوي النظام الشمسي، وينتج عن هذا تغيرات فصلية مختلفة بشكل تام عن التغيرات على سطح باقي الكواكب الرئيسية. يمكن ملاحظة تدور بشكل مغزليا مائلاً من الأعلى، في حين يدور أورانوس مغزلياً أفقياً كتدحرج الكرة. بقرب وقت انقلاب الشمس الصيفي يقابل أحد قطبي أورانوس الشمس بشكل دائم، في حينقد يكون القطب الآخر محجوباً عنها. ويبقى شريط ضيق قرب خط الاستواء يشهد تناوب الليل والنهار، وتكون الشمس في أفق هذه المناطق منحفضة كما يحدث في المناطق القطبية الشمالية على الأرض. ويبقى أحد القطبين مستقبلاً لأشعة الشمس لمدة تتراوح تقريباً 42 سنة، يتبعها 42 سنة أخرى من الظلام. وبقرب وقت الاعتدلان تقابل الشمس خط استواء الكوكب معطيةً فترة تناوب ليلي نهاري مثل تلك التي تظهر على معظم الكواكب. وقد وصل أورارنوس إلى أقصى اعتدال له فيسبعة ديسمبر سنة 2007.

النصف الشمالي السنة النصف الجنوبي
انقلاب شتوي 1902, 1986 انقلاب صيفي
اعتدال ربيعي 1923, 2007 اعتدال خريفي
انقلاب صيفي 1944, 2028 انقلاب شتوي
اعتدال خريفي 1965, 2049 اعتدال ربيعي

ونتيجة لهذا الاتجاه المحوري لأورانوس، فتستقبل المنطقة القطبية كمية من الطاقة الشمسية أكثر مما تستقبل المنطقة الاستوائية. ومع ذلك فإن المنطقة الاستوائية ذات حرارة أعلى. الآلية الكامنة وراء هذا الأمر غير معروفة تماماً. كما حتى السبب وراء الميل المحوري الكبير لأورانوس غير معروف أيضًا، لكن هناك بعض التسقطات التي تقول حتى ذلك وقع أثناء تشكل النظام الشمسي، بأن كوكب أولي بحجم الأرض اصطدم بالكوكب وتسبب بانحراف اتجاه. كان القطب الجنوبي لأورانوس أثناء تحليق فوياجر 2 سنة 1986 لقاء الشمس بشكل مباشر، وقد وسم هذا القطب باسم القطب الجنوبي وفق تعريف الإتحاد الفلكي الدولي حيث يعهد القطب الشمالي لأي كوكب أوقمر بأنه القطب الذي يقع فوق مستوي المجموعة الشمسية بغض النظر عن اتجاه هذا الكوكب في الغزل. وتستخدم قاعدة اليد اليمنى أحياناً بتطبيقها باتجاه حركة الغزل لتحديد القطبين الشمالي والجنوبي.

المرئية

تراوح القدر الظاهري لأورانواس من +5.6 إلى +5.9 خلال الفترة الممتدة من عام 1995 إلى عام 2006، مع الفهم حتى القدر الظاهري الذي يمكن للعين المجردة حتى تراه هو+6.5. وتبلغ زاويته القطرية ما بين 3.4 إلى 3.7 ثانية قوسية وبالمقارنة مع زحل تتراوح الزاوية من 16 إلى 20 والمشتري من 32 إلى 45 ثانية قوسية. يمكن رؤية أورانوس بالعين المجردة في حالة الظلام الدامس، كما يمكن رؤيته بسهولة في المناطق الحضارية باستخدام المناظير. وباستخدام تلسكوبات الهواة مع عدسة يتراوح مقدارها ما بين 15 إلى 23 سم يمكن رؤوية أورانوس كقرص شاحب ذوأطراف مائلة للسواد. أما باستخدام تلسكوبات أكبر عدسة 25 سم أوأكبر يمكن رؤوية شكل السحب وبعض الأقمار الكبيرة كتيتانيا وأوبيرون.

الهجريب الداخلي

مقارنة بين حجمي الأرض وأورانوس.
رسم مبتري للبنية الداخلية لأورانوس.

تبلغ كتلة أورانوس حوالي 14.5 ضعف كتلة الأرض، مما يجعله أقل الكواكب كتلة من بين الكواكب العملاقة، على الرغم من حتى قطره أكبر قليلاً من قطر نبتون، وتساوي تقريباً أربع أضعاف قطر الأرض. أما كثافته فتبلغ 1.27 غ/سم مكعب وبالتالي فإن أورانوس هوثاني أقل كواكب المجموعة الشمسية من حيث الكثافة بعد زحل. وتدل هذه الكثافة على أنه مكون بشكل أساسي من اشكال مختلفة من الجليد كجليد الماء والأمونيا والميثان. قيمة الكتلة الكلية في داخل أورانوس غير معروفة تماماً. حيث تظهر نماذج محاكاة أرقام مختلفة من قيمة هذه الكتلة، على أي حال تتراوح القيم بين 9.3 و13.5 من كتلة الأرض. بينما يشكل الهيدروجين والهليوم جزء قليل من الكتلة الكلية لأورانوس بقيمة كتلية تتراوح ما بين 0.5 إلى 1.5 من كتلة الأرض. بينما الكتلة الباقية والتي تشكل ما بين 0.5 إلى 3.7 من كتلة الأرض تتألف من مواد صخرية.

يوضح النموذج الأساسي لهجريب أورانوس أنه يتألف من ثلاث طبقات: نواة صخرية في المركز، يليها دثار جليدي في الوسط، لتتألف الطبقة الخارجية من غلاف غازي من الهيدروجين/هيليوم. تعتبر النواة صغيرة نسبياً إذا تبلغ كتلتها حوالي 0.55 من كتلة الأرض ونصف قطرها أقل من 20% من نصف قطر أورانوس. في حين يضم الدثار الجزء الأساسي من كتلة أورانوس بقيمة تبلغ 13.4 من كتلة الأرض. بينما الطبقة الخارجية هي ذات الكتلة الأصغر وتساوي 0.5 من كتلة الأرض ،وتمتد لآخر 20% من قطر أورانوس. تبلغ الكثافة ضمن النواةتسعة غرامات في السنيمتر مكعب، والضغط في المركز يصل إلىثمانية ملايين بار ودرجة الحرارة تصل إلى 5000 كلفن. أما هجريب الدثار الجليدي فهوليس مؤلف من الجليد وفق الفهم التقليدي، إنما مؤلف من سوائل حارة ذات كثافة عالية تحتوي على الماء والأمونيا ومواد متطايرة. ويدعى أحياناً هذا السائل الذي يملك خاصية ناقلية كهربائية عالية بمحيط الماء-الأمونيا. إذا الاختلاف الكبير في هجريب الجزء الضخم من هجريب أورانوس ونبتون عن الهجريب الغازي للمشتري وزحل يجعل من المبرر وضع تصنيف عملاق جليدي لهذين الكوكبين ومن الممكن وجود طبقة من الماء المتأين حيث تتحلل جزيئات الماء إلى شوارد هيدروجين وأكسجين وتوجد طبقة أعمق من الماء فائق التأين حيث تتبلور الأكسجين وتتطفوشوارد الهيدروجين حول الشبكة البللورية للأكسجين.

يعتبر النموذج أعلاه هوالنموذج العياري لهجريب أورانوس، لكن هذا النموذج ليس وحيد إذ توجد نماذج أخرى. فنموذج آخر متوافق مع الملاحظات الرصدية حيث بفرض أنه إذا مزجت كميات كبيرة من الهيدروجين والمواد الصخري ضمن طبقة الدثار الجليدي، فإن الكتلة الكلية في الطبقة الداخلية ستكون أقل وباللقاء فإن كمية الهيدروجين والصخور ستكون أعلى. على أي حال البيانات المتوفرة حالياً حول أورانوس لا تسمح بالتأكد من أي نموذج هوالسليم. يظهر من الهجريب الداخلي السائل لأورانوس أنه لا يملك سطح صلب. ويتحول الغلاف الجوي الغازي بشكل تدريجي إلى سائل في الطبقات الداخلية.

الحرارة الداخلية

الحرارة الداخلية لأورانوس منخفضة بشكل ملحوظ مقارنة بالكواكب العملاقة الأخرى. فقيمة الجريان الحراري له منخفضة. وما يزال سبب الانخفاض في حرارته غير مفهوم حتى الآن. يشع نبتون القريب من أورانوس بالهجريب والحجم من الطاقة إلى الفضاء الخارجي 2.61 ضعف مما يستقبله من الشمس. فأورانوس على النقيض من نبتون يكاد لا يشع أي طاقة إضافية. أظهر تحليل بالأشعة تحت الحمراء حتى الطاقة الكلية التي يشعها أورانوس تساوي 0.08 ± 1.06 من الطاقة الشمسية الممتصة في الغلاف الجوي. يعادل الجريان الحراري لأورانوس 0.042 ± 0.047 واط لكل متر مربع والذي هوفي الحقيقة أقل من الجريان الحراري لكوكب الأرض والذي يساوي 0.075. أقل درجة حرارة سجلت على سطح أورانوس كانت 42 كلفن جاعلةً أورانوس أبرد كوكب في المجموعة الشمسية.

تفرض إحدى النظريات المفروضة لتفسير هذا التناقض، أنه عند اصطدام الجرم الكبير بأورانوس تبددت معظم حرارته الأولية. وبقيت الحرارة عميقاً ضمن النواة. وتفرض نظرية أخرى وجود حواجز في الطبقات العليا لأورانوس تمنع حرارة النواة من الخروج إلى السطح.

الغلاف الجوي

يعهد السطح الاسمي لجرم غازي بأنه النقطة التيقد يكون عندها الضغط مساوي لواحد بار ويستخدم هذا التعريف كنقطة الصفر لقياس الارتفاع. مع أنه لا يُوجد سطح صلب حقيقيّ ضمن باطن كوكب أورانوس، فطبقته السطحية الغازية القابلة للرصد من الخارج (دون الاضطرار إلى إدخال مسابير أوما شابه إلى باطن الكوكب نفسه بسبب حجب الطبقات السطحية للرؤية) تسمى عموماً "الغلاف الجوي". يَظل الرصد الخارجيّ مُمكناً حتى انخفاض 300 كم تقريباً تحت مستوى الضغط الجوي 1 بار ضمن جوأورانوس، وعند هذا المستوى الذي تنتهي عنده إمكانية الرصد يَصل الضغط إلى حوالي 100 بار والحرارة إلى 320 ك. وتمتد هالة الغلاف الجوي الرقيقة بشكل مدهش لمسافة تتجاوز ضعفي قطر الكوكب نفسه إذا افترض أنه يَنتهي عند مستوى ضغط 1 بار. يُمكن تقسيم الغلاف الجوي لأورانوس إلى ثلاث طبقات: التروبوسفير تمتد بارتفاع من -300 إلى 50 كم والضغط فيها يتراوح من 100 إلى 0.1 بار. والطبقة الثانية هي الستراتوسفير وتمتد من ازدياد 50 إلى 4000 كم والضغط فيها 0.1 إلى 10–10 بار والطبقة الثالثة هي الثيرموسفير ويمتد الغلاف الجوي فيها من 4,000 إلى 50,000 كم من السطح المُفترض.

الهجريب

يختلف هجريب الغلاف الجوي لأورانوس عن باقي الكواكب، على الرغم من أنه يتكون من مركبين أساسيين هما الهيدروجين والهيليوم. حيثقد يكون الكسر المولي للهيليوم هوعدد ذرات الهيليوم ضمن جميع جزيء من الغاز ويساوي على أورانوس 0.15 ± 0.03 0.15 ± 0.03 والذي يُقابله في الطبقات العليا هوكسر كتلي بمقدار 0.26 ± 0.05. وهذه القيمة قريبة إلى الكسر الكتلي للنجم الأولي والذي يساوي 0.275 ± 0.01، ويعني هذا حتى الهيليوم لم يستقر في مركز الكوكب كما هومعروف في العمالقة الغازية. كما حتى الشيء الشاذ الآخر هواحتواءه على الميثان. حيث يمتلك الميثان مجالات امتصاص عالية للأشعة المرئية والأشعة القريبة من تحت الحمراء مما يجعل لون أورانوس سماوياً. يشكل الميثان نسبة 2.3% من الغلاف الجوي مع تواجد كسر مولي بنسبة أقل تحت سطح سحب الميثان عند الضغط 1.3 بار، ليشكل هذا ما تتراوح نسبته بين 20 و30% من نسبة الكربون المتوافر في الشمس. تكون نسبة المزج لجزيئات الهيدروجين أقل في الطبقات العليا بسبب درجة الحرارة المنخفضة، مما يقلل من مستوى التشبع ويسبب زيادة في تجمد الميثان الخارج. ومن غير المعروف وفرة بعض المواد المتطايرة بما في ذلك الأمونيا والماء وكبريتيد الهيدروجين في عمق الغلاف الجوي، لكن من المرجح حتى وجودها ذوهجريز أعلى من باقي المجموعة الشمسية. وجدت كميات من أنواع مختلفة من الهيدروكربونات في الستراتوسفير، ويعتقد أنه نتجت بسبب التحلل الضوئي للميتان بالأشعة فوق البنفسجية. كما يتضمن الغلاف الجوي كلاً من الإيثان والأسيتيلين والبروبين والبوتاديين. كما كشف التحليل الطيفي وجود كميات من بخار الماء وأول أكسيد الكربون وثاني أكسيد الكربون في أعلى الغلاف الجوي، ويمكن حتى تنشأ هذه المركبات من مصادر خارجية كسقوط الغبار والمذنبات.

التربوسفير

توزع الحرارة في طبقة التربوسفير والطبقة السفلية من السترابوسفير، كما أنها تتضمن الغيوم والضباب.

طبقة التربوسفير هي أدنى وأكثف طبقة من طبقات الغلاف الجوي. وتتميز بتناقص درجة الحرارة مع الارتفاع. فتسقط درجة الحرارة من 320 كلفن عند قاعدة طبقة التربوسفير الاسمية عند الارتفاع -300 كم إلى 53 كلفن عند ازدياد 50 كم. في الواقع تتغير درجة الحرارة عند أعلى ازدياد لهذه الطبقة من 57 كلفن إلى 49 كلفن تبعاً لخط العرض. وتكون طبقة التربوسفير المسؤولة بشكل رئيسي عن انبعاثات الكوكب الحرارية من الإشعة تحت الحمراء. وبذلك تتحدد درجة الحرارة الفعالة 59.1 ± 0.3 كلفن.

ويعتقد حتى هذه الطبقة تمتلك سحب ذات هجريب معقد، فيفترض وجود سحب من الماء عند منطقة ضغط تتراوح ما بين 50 و100 بار، وكذلك سحب من بيكبريتيد الأمونيوم في منطقة ضغط تتراوح ما بين 40 و20 بار، وسحب من الأمونيا كبريتيد الهيدروجين في منطقة الضغط ما بينعشرة إلى ثلاثة بار، وأخيراً تتواجد سحب الميثان عند الضغط من 2 إلى 1 بار. وتعتبر طبقة التربوسفير جزء حيوي هام من الغلاف الجوي، فتوجد رياح قوية وسحب براقة.

الغلاف الجوي العلوي

يعهد الغلاف الجوي المتوسط لأورانوس باسم الستراتوسفير، حيث تزداد درجة الحرارة تدريجياً مع الارتفاع. فتكون درجة الحرارة 53 كلفن في المنطقة الفاصلة ما بين التروبوسفير والستراتوسفير. وتصل هذه الحرارة إلى ما بين 800 و850 كلفن في بداية طبقة الثيرموسفير. والسبب الراجع لهذه الزياد مع الارتفاع تعود لامتصاص الميثان الأشعة تحت الحمراء والأشعة فوق البنفسجية الشمسية من قبل غاز الميثان وهيدروكربونات أخرى، والذي نتج في هذا الجزء من الغلاف بسبب عملية التحليل الضوئي للميثان. تتواجد الهيدروكربونات في طبقة رقيقة على ازدياد يتراوح بين 100 إلى 300 كم والموافقة لضغط يتراوح منعشرة إلى 0.1 بار ودرجة حرارة من 75 إلى 175 كلفن. النسبة الأكبر من الهيدركربونات هي تعبير عن مزيج من الميثان والإستيلين والإيثان حيث تبلغ نسبة الهيدركربونات 10−7 من نسبة الهيدروجين. أما نسبة أول أكسيد الكربون فهي مشابه عند هذا الارتفاع. بينما نسبة الهيدركربونات الأثقل وثاني أكسيد الكربون أقل بثلاث مرات مما هي عليه للهيدركربونات الاخف وأول أكسيد الكربون. بينما نسبة الماء حوالي 7*10−9 من نسبة الهيدروجين. يميل الإيثان والإستيلين إلى التكاثف في المناطق ذات الحرارة الأدنى في السترابوسفير والمنطقة الحدية ما بين السترابوسفير والتربوسفير مما يؤدي إلى تشكل طبقة ضبابية، على أي حالقد يكون هجريز الهيدركربونات فوق طبقة الضباب أقل مما هي عليه في السترابوسفير باقي الكواكب العملاقة.

تتألف الطبقة الخارجية من الغلاف الجوي لأورانوس من الثرموسفير والهالة. وتكون درجة الحرارة غير متجانسة وتتراوح ما بين 800 و850 كلفن. وحتى الآن من غير المفهوم مصادر الطاقة اللازمة للحفاظ على هذه القيمة العالية، حيث لا تكفي الأشعة الفوق بنفسجية الشمسية والأشعة فوق البنفسجية الخارجية والنشاط الشفقي بتزويد هذا النشاط الحراري. ويمكن حتى يساهم فقدان الفعالية التبريدية للهيدروكربونات في طبقات الستراتوسفير ذات الضغط الأقل من 0.1 ميلي بار. بالإضافة إلى دور ذرات الهيدروجين، حيث تحوي الثيرموسفير والكرونات على ذرات هيدروجين حرة. حيث حتى كتلتها الصغيرة مع درجة الحرارة العالية تفسر سبب امتداد الهالة إلى ما يساوي ضعفي نصف قطر أورانوس أو50000 كم من أورانوس. وهذه الهالة ميزة فريدة لكوكب أورانوس. ويتضمن تأثيرها علىمقاومة الجزيئات الصغير التي تدور حول أورانوس مما يسبب استنزاف الغبار في حلقات أورانوس. تشكل الطبقة العليا من الستراتوسفير مع طبقة الثيرموسفير الغلاف المتأين لأورانوس. وتقبع طبقة الغلاف المتأين على ازدياد يتراوح بين 2000 إلى 10000 كم. طبقة الغلاف المتأين لأورانوس أكثف مما هي لنبتون وزحل، والتي يُحتمل أنها نشأت بسبب الهجريز المنخفض للهيدروكربونات في الستراتوسفير. يتناسب الغلاف المتأين مع الأشعة الفوق بنفسجية الشمسية والتي بدورها تتناسب كثافتها مع النشاط الشمسي. أما نشاط ظاهرة الشفق فهي كبيرة مقارنة مع نظيرتها في المشتري وزحل.

حلقات أورانوس

حلقات أورانوس الداخلية. تظهر الحلقة إبسلون وهي أكثر الحلقات سطوعاً، إضافة لثمان حلقات أخرى.
حلقات أورانوس.

يملك أورانوس نظام حلقات كامل، وبذلك يعتر النظام الحلقي لأورانوس ثاني نظام حلقي يكتشف في النظام الشمسي بعد زحل. وتهجرب الحلقات من مواد مظلمة تقريباً، والتي تختلف بالحجم وتتنوع من أحجام ميكروية إلى أحجام تصل إلى أجزاء مترية. وقد تم اكتشاف ثلاثة عشر حلقة متمايزة حتى الآن. وأكثر هذه الحلقات لمعاناً هي الحلقة إبسلون (ε). وجميع حلقات أورانوس باستثناء حلقتين متقاربين جداً حيث يصل عرضهم لبضع كيلومترات. يعتقد حتى هذه الحلقات حديثة النشأة، حيث تشير الاعتبارات الديناميكة إلى عدم نشوء هذه الحلقات مع نشوء أورانوس. ويعتقد حتى المواد ضمن الحلقات نشأت من تحطم قمر (أوأقمار) لأورانوس نتيجة اصطدام عالي السرعة. حافظت عدد قليل من الجزيئات من بين العدد الضخم الناتج عن التحطم على وجودها في منطقة مستقرة معضلة حلقات الكوكب.

وصف ويليام هيرشيل من خلال رصده احتمال وجود حلقات حول هذا الكوكب. إلا حتى الرؤوية في ذلك الوقت كان مشكوك فيها. ولم يرصد أحد آخر هذه الحلقات في القرنين التاليين. ومع ذلك وصف هيرشيل وصفاً دقيقاً للحلقة إبسلون من حيث لونها الأحمر وحجمها وزاويتها النسبية للأرض وتعير مظهرها مع دوران أورانوس حول الشمس. وقد أعرب عن تمييز حلقات أورانوس في سنة 1977 على يد الفهماء جايمس إيليوت وإدوارد دونهم ودوغلاس مينك مستخدمين مرصد كايبر المحمول جوا، وقد كان هذا الاكتشاف مصادفة، حيث كان من المخطط دراسة الغلاف الجوي لأورانوس عبر احتجاب النجم SAO 158687 بأورانوس. فقد لاحظوا اختفاء النجم لفترات وجيزة قبل وبعد احتجابه بأورانوس، ليستنتجوا أنه لابد من وجود نظام حلقات حول أورانوس تسبب بالاختفاءات القصيرة للنجم. وكشفوا في وقت لاحق عن أربع حلقات أخرى حول أورانوس. وقد تم تصوير الحلقات بشكل مباشر عندما حلق المسبار فوياجر 2 في سنة 1986. كما اكتشف فوياجر 2 حلقتين أخرىتين رقيقتين ليصبح العدد الكلي للحلقات المكتشفة حتى ذلك الوقت أحد عشر حلقة.

اكتشف بواسطة مرصد هابل الفضائي سنة 2005 حلقتين لم تكونا معروفتين في السابق. وتقع الحلقة الأكبر على بعد ضعفي المسافة عن أورانوس من الحلقات السابقة. تقع هاتين الحلقتين بعيداً جداً عن الكوكب لذلك دعيتا بالحلقات الخارجية. كما اكتشف المرصد قمرين صغيرين أحدهما هوالقمر ماب والذي يتشارك في مداره مع مدار الحلقة الأبعد من الحلقتين المكتشفتين حديثاً. ليصل عدد الحلقات المكتشفة إلى ثلاثة عشر حلقة. أظهرت صور ملتقطة بواسطة مرصد كيك في سنة 2006 ألوان الحلقتين الجديدتين، فالحلقة الأبعد زرقاء اللون والأخرى حمراء. وإحدى الفرضيات لتفسير اللون الأزرق للحلقة الأبعد تفرض وجود جزيئات دقيقة من جليد الماء ناتجة من القمر ماب وهي صغيرة بما فيه الكفاية لتبعثر الضوء الأزرق. وفي اللقاء أقرب حلقات أورانوس تظهر بلون رمادي.

الحقل المغناطيسي

الحقل المغناظيسي لأورانوس كما تم رصده من خلال فوياجر2.

لم تكن هناك قياسات لخصائص الغلاف المغناطيسي لأورانوس قبل وصول المسبار فوياجر 2، لذلك بقيت طبيعة هذا الغلاف لغز. وقد تسقط الفلكيين قبل سنة 1986 حتى الحقل المغناطيسي لأورانوس سيكون على نفس خط الرياح الشمسية، وبذلك سيكون بمحاذاة قطبي الكوكب المتوضعي على مستوي مسار الشمس.

كشفت رصود فوياجر حتى الحقل المغناطيسي لأورانوس غريب، فهولا ينشأ من المركز الهندسي للكوكب إضافة إلى ميلانه 59 درجة عن محور دورانه. فينحرف المركز القطبي له بمقدار ثلث نصف قطر الكوكب باتجاه القطب الجنوبي الدوراني. وتسبب هذا التوزيع الهندسي الغريب عدم تناظر عالي في الغلاف المغناطيسي، فتكون شدة الحقل المغناطيسي السطحي في النصف الجنوبي أقل من 0.1 غاوص، بينما تزيد في النصف الشمالي عن 1.1 غاوص. ويساوي متوسط الحقل المغناطيسي السطحي 0.23 غاوص. وبالمقارنة مع الحقل المغناطيسي الأرضي، فهوتقريباً متساوي في كلا القطبين، كما حتى الحقل المغناطيسي عند خط الاستواء يوازي خط الاستواء الجغرافي. ويساوي العزم المغناطيسي القطبي لأورانوس 50 ضعف من العزم الأرضي. يمتلك نبتون نفس الإزاحة تقريباً، مما يوحي بأن هذا صفة مشهجرة للعمالقة الجليدية. تفرض إحدى الفرضيات حتى الحقل المغناطيسي للعمالقة الجليدية لا ينشأ في النواة مثل الكواكب الصخرية أوالعمالقة الغازية، إنما ينشأ بسبب حركة في أعماق ليست بالبعيدة مثل محيط الماء-أمونيا.

وعلى الرغم من هذا الانرياح الغريب، فيملك الغلاف المغناطيسي لأورانوس نفس الخواص لباقي الأغلفة المغناطيسية لمختلف الكواكب. فيوجد تقوس صدمي على بعد يساوي 23 مرة من نصف قطر أورانوس، كما يوجد حزام إشعاعي على بعد 18 ضعف من نصف قطر أورانوس. ويعتبر الغلاف المغناطيسي لأورانوس أكثر شبهاً لغلاف زحل ومختلف عن غلاف المشتري. تمتد مسارات للذيل المغناطيسي خلف الكوكب لمسافة بملايين الكيلومترات إلى الفضاء الخارجي.

يحتوي الغلاف المغناطيسي لأورانوس على جسيمات مشحونة مثل البروتونات والإلكترونات وكميات قليلة من شوارد H2+ ولم يتم تحديد شوارد أثقل من هذه. ومن الممكن حتى هذه الجسيمات المشحونة مستمدة من هالة الغلاف الجوي الحار. ويمكن حتى تصل طاقة الشوارد والإلكترونات إلى أربعة و1.2 ميجا إلكترون فولت على التوالي. تصل كثافة الشوارد ذات الطاقة المنخفضة (أقل من 1 كيلوإلكترون فولت) في الغلاف المغناطيسي الداخلي إلى 2 سم−3. تتأثر كثافة الجسيمات المشحونة بحركة أقمار أورانوس حيث تشكل فجوات إشارة في الغلاف المغناطيسي. كما حتى كثافة الجسيمات المشحونة عالية بما فيه الكفاية لتُحدث تجوية فضائية والتي تؤثر على جيولوجيا أقمار أورانوس. وهذا ما قد سبب عدم تجانس في لون سطوح أقمار أورانوس وحلقاته. يظهر لأوارنوس شفق متطور نسبياً على شكل قوس ساطع حول كلا القطبين.

المناخ

النصف الجنوبي لأورانوس بألوان حقيقية تقريباً وفق فوياجر 2 وتظهر حزم الغيوم والغلاف الجوي.

يظهر أورانوس بالأشعة المرئية والأشعة فوق البنفسجية ذوهجريب رقيق في الغلاف الجوي مقارنة بالكواكب العملاقة الأخرى، وحتى من نبتون والذي يعتبر أكثر الكواكب مشابهةً لأورانوس. وقد رصد فوياجر أثناء تحليقه حول أورانوس سنة 1986 طبقة رقيقة من السحب تعبر الطبقات الداخلية له. وإحدى التفسيرات المقترحة لتشكل هذه السحب هوبسبب الحرارة الداخلية المنخفضة لأورانوس حيث يعتبر أورانوس أبرد كوكب في المجموعة الشمسية. كانت أقل حرارة مقاسة على أورانوس تساوي 49 كلفن.

بنية حزم الغيوم والرياح والسحب

منطقة رياح سريعة على أورانوس، تظهر المنظقة المظللة الطوق الجنوبي ونظيرتها الشمالية المستقبلية. المنحني الأحمر يبين انسجام البيانات.

حلق فوياجر 2 في سنة 1986 فوق النصف الجنوبي، ليجد حتى النصف الجنوبي يمكن حتى يقسم إلى منطقتين: قبعة قطبية ساطعة، ونطاقات استوائية معتمة. والمنطقة الفاصلة بينهما تقع على خط عرض -45 درجة. توجد منطقة تقع في المجال العرضي -45 إلى -50 درجة، هي المنطقة ذات السطوع الأعلى في القسم المرئي من الكوكب. وتسمى هذه المنطقة الطوق ويعتقد حتى منطقة القبعة القطبية والطوق هي مناطق كثيفة بسحب الميثان الواقعة ضمن مجال الضغط ما بين 1.3 إلى 2 بار. بالإضافة إلى بنية النطاقات الممتدة بشكل واسع، لاحظ فوياجر بنية سحب رقيقة تمتد لعدة درجات شمال الطوق، ولم يستطع هذا المسبار رصد النصف الشمالي لأورانوس، بسبب وصوله أثناء ذروة الصيف الجنوبي. وعندما وصل أورانوس لذروة الشتاء في بداية القرن الحادي والعشرين تم رصد النصف الشمالي بواسطة مرصد هابل الفضائي ومرصد كيك ولم يتم ملاحظة طوق أوقبعة قطبية في النصف الشمالي. وبذلك يظهر أورانوس عدم تجانس في بنية النطاقات. على أي حال ظهر في سنة 2007 عندما كان أورانوس عند نقطة الاعتدال حتى الطوق الجنوبي اختفى تقريباً، مع ظهور طوق رقيق في النصف الشمالي على درجة 45.

أدى تطور تقنيات دقة التصوير إلى ازدياد كبير في رصد سحب ساطعة منذ سنة 1990. ومعظم هذه السحب التي تم رصدها كانت في النصف الشمالي منذ حتى بدأت بالظهور. وإحدى التفسيرات المبكرة من حتى رصد السحب الساطعة في الجزء المظلم أسهل منه في النصف الجنوي بسبب حتى الطوق يجعل من الصعب تمييزها. ومع ذلك يوجد اختلاف في نمط هذه السحب بين الجزئين الشمالي والجنوبي، فالسحب الشمالية أصغر وأكثر وضوحاً وسطوعاً. وتظهر عند خطوط عرض أعلى. لكن عمر هذه السحب قصير، فبعض السحب الصغيرة يصل عمرها لساعة واحدة فقط. بينما واحدة على الأقل من السحب الجنوبية ما زالت مستمرة منذ تحليق فوياجر. كشفت الأرصاد الحالية وجود قواسم مشهجرة ما بين سحب أورانوس وسحب نبتون. عملى سبيل المثال البقعة المظلمة على نبتون لم بتم رصد مثيل لها على أورانوس في ما قبل 2006، حيث تم تصوير مثيل لها ويطلق عليها اسم البقعة المظلمة على أورانوس. وتفرض إحدى التسقطات حتى أورانوس يصبح أكثر شبهاً لنبتون خلال فترة الاعتدالان.

أول بقعة مظلمة تم رصدها على أورانوس سنة 2006.

سمح تتبع أثر السحب من تحديد مناطق الرياح التي تهب في أعلى التربوسفير. فيكون اتجاه الرياح عند خط الاستواء إلى الوراء أي أنها تهب بعكس اتجاه دوران الكوكب بسرعة تتراوح من -100 إلى -50 متر في الثانية. تزداد سرعة الرياح بالابتعاد عن خط الاستواء لتصل إلى قيمة الصفر عند خطي عرض ±20° حيث توجد أقل درجة حرارة في التربوسفير. تستمر الزيادة في سرعة الرياح وتبلغ أعلى قيمة لها عند خطي عرض ±60° ثم تتناقص لتصل إلى الصفر عند القطبين. بالقرب من القطبين تتبع الرياح حركة الكوكب التراجعية. تتراوح سرعة الرياح عند خط عرض −40° من 100 إلى 150 متر في الثانية. وبما حتى الطوق يحجب جميع الغيوم الأدنى منه فمن المحال حالياً قياس سرعة الرياح من الطوق وحتى قبعة القطب. في اللقاء، وصلت أعلى سرعة رياح لاكثر من 240 متر في الثانية عند خط عرض +50.

التغيرات الفصلية

صورة ملتقطة سنة 2005 تظهر الحلقات والطوق الجنوبي وغيوم ساطعة في النصف الشمالي.

ظهرت في الفترة الممتدة من مارس إلى مايوفي سنة 2004 عدد كبير من السحب في الغلاف الجوي لأورانوس، جاعلةً مظهره مشابه إلى حد كبير مظهر نبتون. وقد تضمن هذا الرصد تسجيل أعلى سرعة للرياح والتي بلغت 229 متر في الثانية إضافة إلى عاصفة رعدية مستمرة أطلق عليها اسم ألعاب أربعة مايوالنارية. كما رصد الباحثون في مؤسسة علوم الفلك وجامعة ويسكنسون في 24 أغسطس سنة 2006 بقعة مظلمة على سطح أورانوس، اعطت فهماء الفلك نظرة أكثر عمقاً لنشاط الغلاف الجوي لهذا الكوكب، أما سبب هذه التغيرات الفجائية في الطقس غير معروفة تماماً، لكن يعتقد حتى الميلان المحوري الكبير لأورانوس والمسبب لتغيرات فصلية متباينة هوالسبب. من الصعب تحديد طبيعة التغيرات الفصلية على أورانوس لأن البيانات المتوافرة عن أورانوس لا تضم تام فترة 84 سنة(سنة لأورانوس كاملة). ومع ذلك فقد حدثت بعض الاكتشافات. أظهرت القياسات المتخذة بواسطة القياس الضوئي الفلكي على مدار عام ونصف العام الأورانوسي (منذ سنة 1950) وجود تغيرات في السطوع لنطاقين طيفيين، وأعظم تغير يحدث في فترة الانقلاب والأصغري في فترة الاعتدال. كما بدأت قياسات لتغيرات دورية مماثلة تم الحصول عليها باستخدام الأشعة الصغرية في الطبقة السفلى من التربوسفير، وقد بدأت هذه القياسات منذ سنة 1960. كما بدأت قياس درجة الحرارة بدءاً من سنة 1970 لتظهر أعلى قيمة للحرارة في الستراتوسفير عند انقلاب سنة 1986. ويعتقد حتى سبب هذه التغيرات بسبب التغيرات في هندسة المشاهدة.

على أي حال، توجد بعض الأسباب تجعل الاعتقاد بأن مسببات فيزيائية وراء التغيرات الفصلية. فبينما يعتقد حتى الكوكب يملك قطب جنوبي ساطع، وقطب شمالي معتم تقريباً، وهومايتنافى مع نموذج التغيرات الموسمية أعلاه. في خلال الانقلاب الشتوي السابق سنة 1944، أظهر أورانوس مستويات عالية من السطوع مما يوحي بأن القطب الشمالي ليس في حالة إعتام دائم. وتعني هذه المعلومات حتى القطب المرئي يسطع قبل الانقلاب ويعتم بعد الاعتدال. كشفت تحاليل تفاصيل البيانات المُحصلة بواسطة الضوء المرئي والأشعة الصغرية من حتى التغيرات الدورية للسطوع ليس متجانس بشكل دائم خلال فترة الاعتدال، والتي تشير إلى اختلافات في البياض وفق التغيرات في خطوط الطول والعرض. وفي سنة 1990 ابتعد أورانوس عن نقطة الانقلاب ليلاحظ من خلال مرصد هابل والمراصد الأرضية بأن سطوع القطب الجنوبي بدأ يعتم بشكل تدريجي (باستثناء الطوق الجنوبي الذي حافظ على سطوعه)، في حين ظهرت زيادة في النشاط في النصف الشمالي، مثل تشكل السحب وزيادة سرعة الرياح، مما يوحي بأن النصف الشمالي سيصبح أكثر سطوعاً. وقد وقع هذا بالعمل في سنة 2007 أثناء الاعتدال، عندم ظهر طوق شمالي خافت، وأصبح الطوق الجنوبي غير مرئي تقريباً، مع بقاء عدم تجانس في الرياح، حيث حتى الرياح الشمالية أبطأ منها في النصف الجنوبي.

ماتزال آلية حدوث التغيرات الفصلية غير واضحة. في نقطة الانقلاب الصيفي أوالشتوي يبقى تصف أورانوس معرض للأشعة الشمسية أويتوضع بعيداً عنها. ويعتقد حتى سطوع النصف المعرض للأشعة الشمسية ناتج عن سحب الميثان المحلية السميكة، وطبقات الضباب المتوضعة في التربوسفير. كما حتى الطوق الساطع مرتبط أيضاً بسحب الميثان. ويمكن تفسير التغيرات في المنطقة الجنوبية بتغيرات السحب في الطبقات السفلية. ومن المحتمل حتى تغيرات انبعاثات الأشعة الصغرية يحدث بسبب تغيرات في عمق التربوسفير. يمر أورانوس حالياً في فترة الاعتدال الخريفي والربيعي فيمكن حتى تحدث تغيرات ديناميكية وتغيرات بالحمل الحراري.

نشأة أورانوس

الكثير من النظريات تشير إلى اختلافات في نشأة العمالقة الغازية والعمالقة الجليدية. يعتقد حتى المجموعة الشمسية تشكلت من كرة عملاقة من الغاز والعملاق تعهد باسم سديم الشمس الأولي. أغلب غازات السديم، وبشكل رئيسي الهيليوم والهيدروجين شكلت الشمس، في حين تجمع الغبار مشكلاً الكواكب الأولية. وحدثا نما الكوكب ازدادت جاذبيته لتضم إليها غازات أكثر من السديم. وحدثا ضم إليه مزيد من الغاز حدثا أصبح أكبر، وحدثا أصبح أكبر حدثا ضم غاز أكثر. إلى حتى يصل إلى نقطة حرجة، ليزداد حجمه بقيمة أسية. لا تصل العمالقة الجليدية إلى هذه القيمة الحدية. أظهرت نماذج محاكاة هجرة الكواكب حتى العمالقة الجليدية تشكلت على مسافة أقرب مما هي عليه الآن من الشمس، ثم انتقلت فيما بعد إلى وضعها الحالي.

أقمار أورانوس

يملك أورانوس 27 قمرًا طبيعيًا. وقد أعطيت هذه الأقمار أسماء مستمدة من أعمال ويليام شكسبير وألكسندر بوب. والأقمار الخمسة الرئيسية هي ميراندا وأرييل وتيتانيا وأوبيرون وأومبريل. تعتبر كتل نظام أقمار أورانوس هي الأصغر من بين العمالقة الغازية. فكتلة الأقمار الخمسة الرئيسية تعادل فقط نصف كتلة تريتون قمر نبتون. أكبر هذه الأقمار، تيتانيا، له نصف قطر يصل إلى 788.9 كم أي أقل من نصف قطر قمر الأرض ولكنه أكبر قليلاً من ريا ثاني أكبر أقمار زحل، ليكون تيتانيا ثامن أقمار المجموعة الشمسية من حيث الكبر، تملك أقمار أورانوس بياض قليل نسبياً يتراوح من 0.20 لأوبيرون إلى 0.35 لأرييل). تهجرب الأقمار من كتل جليدية وكتل صخرية بنسبة 50% للمكونات الجليدية و50% للمكونات الصخرية تقريباً، ومن الممكن حتى يحوي الجليد الأمونيا وثاني أكسيد الكربون.

الأقمار الرئيسية لأورانوس، ويظهر الحجم النسبي لهذه الأقمار.

بحسب الظاهر فإن أرييل لديه سطح أحدث من بين جميع الأقمار، بينما يظهر حتى أوبيرون هوالأقدم. يملك ميراندا أخاديد عميقة تصل لعمق 20 كم، وطبقات مدرجة، وتوزع عشوائي في عمر السطح والتضاريس. ويعتقد حتى النشاط الجيولوجي القديم لميراندا كان نتيجة التسخين المدي في وقت كان مداره أكثر شذوذاً وربما كان نتيجة ذلك نسبة الرنين المداري مع أوبيرون البالغة 1:3. وربما حتى العمليات الصدعية مرتبطة بتقلبات الانحناءات والتي قد تكون هي السبب الرئيسي في تشكل الأخدود الرئيسي على ميراندا والمشابه لمضمار السباق. كذلك يعتقد وجود رنين مداري 1:4 بين أرييل وتيتانيا.

استكشاف أورانوس

أورانوس على شكل هلال كما تم رؤيته من خلال فوياجر 2 أثناء مغادرته إلى نبتون.

زار فوياجر 2 أورانوس في سنة 1986. وكانت هذه الرحلة الوحيدة التي أقتربت من أورانوس، ولا توجد حالياً مخططات لرحلات لزيارة هذا الكوكب. أطلق فوياجر 2 في سنة 1977 من قبل وكالة ناسا، ليبدأ أول اقتراب من أورانوس في 24 يناير من سنة 1986، ليحلق على مسفة 81500 كم من فوق السحب العليا لأورانوس، قبل حتى يكمل رحلته إلى نبتون.

درس فوياجر 2 البنية والهجريب الكيميائي للغلاف الجوي، كما قام باكتشافعشرة أقمار جديدة لم تكن معروفة من قبل، بالإضافة إلى دراسة مناخه الفريد نتيجة ميلانه المحوري بمقدار 97.77°. كما تفهم الحقل المغناطيسي، والبنية غير المنتظمة لهذا الحقل. بالإضافة إلى عرض تفاصيل أكثر عن تضاريس والاستكشافات ضمن الأقمار الخمسة الكبيرة ودراسة الحلقات التسع التي كانت معروفة آنذاك إضافة إلى اكتشاف حلقتين جديدتين.

اقترح بعض الباحثين من إدارة المسح العقدية التابعة لوكالة ناسا، اقترحوا إرسال مسبار حديث ليدور حول أورانوس ويستكشفه مجددًا بعد رحلة فوياجر 2، ويهدف هذا الاقتراح إلى إطلاق المسبار خلال فترة زمنية تمتد بين عاميّ 2020 و2023، ويتسقطون حتى تدوم الرحلة إلى الكوكب حوالي 13 سنة. وعلى الرغم من إمكانية إطلاق صاروخ مركبة هذه الرحلة باستخدام الانبعاثات النارية الناتجة عن احتراق المواد الكيميائية، إلا حتى البعض يقترح استخدام الدفع الكهربائي بواسطة بطاريات تعمل على الطاقة الشمسية، الأمر الذي من شأنه السماح باستخدام مركبة ذات كتلة أكبر.

في الثقافة

يعتبر أورانوس () وفق التنجيم الفلكي بأنه الكوكب القائد لمواليد برج الدلو. كما يربط بالكهرباء نظراً للونه السماوي والقريب من اللون الأزرق للكهرباء.

كما سمي العنصر الكيميائي اليورانيوم مشتقاً من اسم أورانوس، وكان هذا العنصر قد اكتشفه العالم الألماني مارتن كلابروث سنة 1789 وسمي على اسم أورانوس والذي كان مكتشفاً حديثاً. كما كانت سميت إحدى العمليات العسكرية الهامة باسم الكوكب وهي عملية أورانوس وقد كانت عملية ناجحة للجيش الأحمر لفك الحصار عن مدينة ستالينغراد، والتي أنهت الحرب مع الجيش الألماني النازي على الأراضي الروسية.

المراجع

  1. ^ العنوان : Уран — نشر في: Brockhaus and Efron Encyclopedic Dictionary. Volume XXXIVа, 1902
  2. ^ المؤلف: آرثر باري — العنوان : A Short History of Astronomy — الناشر: جون موراي
  3. ^ Seligman, Courtney. "Rotation Period and Day Length". مؤرشف من الأصل في 30 أكتوبر 2018. اطلع عليه بتاريخ 13 أغسطس 2009.
  4. Williams, Dr. David R. (January 31, 2005). "Uranus Fact Sheet". NASA. مؤرشف من الأصل في 26 يوليو2019. اطلع عليه بتاريخعشرة أغسطس 2007.
  5. ^ "The MeanPlane (Invariable plane) of the Solar System passing through the barycenter". 2009-04-03. مؤرشف من الأصل في 20 أبريل 2009. اطلع عليه بتاريخعشرة أبريل 2009. (produced with Solexعشرة نسخة محفوظة 13 أبريل 2003 at Archive.is written by Aldo Vitagliano; see also Invariable plane)
  6. ^ Yeomans, Donald K. (July 13, 2006). "HORIZONS System". NASA JPL. مؤرشف من الأصل في 1 أغسطس 2019. اطلع عليه بتاريخ 08 أغسطس 2007. — At the site, go to the "web interface" then select "Ephemeris Type: ELEMENTS", "Target Body: Uranus Barycenter" and "Center: Sun".
  7. ^ Munsell, Kirk (May 14, 2007). "NASA: Solar System Exploration: Planets: Uranus: Facts & Figures". NASA. مؤرشف من الأصل فيسبعة نوفمبر 2015. اطلع عليه بتاريخ 13 أغسطس 2007.
  8. Seidelmann, P. Kenneth (2007). "Report of the IAU/IAGWorking Group on cartographic coordinates and rotational elements: 2006". Celestial Mech. Dyn. Astr. 90: 155–180. doi:10.1007/s10569-007-9072-y.
  9. Espenak, Fred (2005). "Twelve Year Planetary Ephemeris: 1995 - 2006". NASA. مؤرشف من الأصل في 05 ديسمبر 2012. اطلع عليه بتاريخ 14 يونيو2007.
  10. ^ العنوان : Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 — المجلد: 109 — الصفحة: 101-135 — العدد: 2 — نشر في: Celestial Mechanics and Dynamical Astronomy — https://dx.doi.org/10.1007/S10569-010-9320-4
  11. ^ Feuchtgruber, H. (1999). "Detection of HD in the atmospheres of Uranus and Neptune: a new determination of the D/H ratio". Astronomy and Astrophysics. 341: L17–L21. Bibcode:1999A%26A...341L..17F تأكد من صحة قيمة |bibcode= length (مساعدة).
  12. ^ "MIRA's Field Trips to the Stars Internet Education Program". Monterey Institute for Research in Astronomy. مؤرشف من الأصل في 2 أكتوبر 2018. اطلع عليه بتاريخ 27 أغسطس 2007.
  13. Lunine, Jonathan. I. (1993). "The Atmospheres of Uranus and Neptune". Annual Review of Astronomy and Astrophysics. 31: 217–263. Bibcode:1993ARA%26A..31..217L تأكد من صحة قيمة |bibcode= length (مساعدة). doi:10.1146/annurev.aa.31.090193.001245.
  14. Podolak, M. (1995). "Comparative models of Uranus and Neptune". Planet. Space Sci. 43 (12): 1517–1522. Bibcode:1995P%26SS...43.1517P تأكد من صحة قيمة |bibcode= length (مساعدة). doi:10.1016/0032-0633(95)00061-5.
  15. Smith, B.A. (1986). "Voyager 2 in the Uranian System: Imaging Science Results". Science. 233 (4759): 97–102. Bibcode:1986Sci...233...43S. doi:10.1126/science.233.4759.43. PMID 17812889.
  16. Sromovsky, L.A. (2005). "Dynamics of cloud features on Uranus". Icarus. 179: 459–483. Bibcode:2005Icar..179..459S. doi:10.1016/j.icarus.2005.07.022.
  17. ^ Arridge, Chris (2010). "Uranus Pathfinder". مؤرشف من الأصل في 19 نوفمبر 2017. اطلع عليه بتاريخعشرة يناير 2011.
  18. ^ Paul Sutherland. "Scientists plan Uranus probe." Christian Science Monitor. January 7, 2011. Accessed January 16, 2011. نسخة محفوظة 09 نوفمبر 2017 على مسقط واي باك مشين.
  19. ^ ESA Official Website. "Call for a Medium-size mission opportunity for a launch in 2022." Jan. 16, 2011. Accessed Jan. 16, 2011. نسخة محفوظةعشرة أكتوبر 2012 على مسقط واي باك مشين.
  20. ^ Smith, R.M. (2010). "HORUS—Herschel Orbital Reconnaissance of the Uranian System". 41st Lunar and Planetary Science Conference: 2471. Bibcode:2010LPI....41.2471S.
  21. ^ Dunkerson, Duane. "Uranus—About Saying, Finding, and Describing It". thespaceguy.com. مؤرشف من الأصل في 13 مايو2019. اطلع عليه بتاريخ 17 أبريل 2007.
  22. ^ "Bath Preservation Trust". مؤرشف من الأصل في 29 أكتوبر 2018. اطلع عليه بتاريخ 29 سبتمبر 2007.
  23. ^ William Herschel; Watson, Dr. (1781). "Account of a Comet, By Mr. Herschel, F. R. S.; Communicated by Dr. Watson, Jun. of Bath, F. R. S". Philosophical Transactions of the Royal Society of London. 71: 492–501. Bibcode:1781RSPT...71..492H. doi:10.1098/rstl.1781.0056.
  24. ^ Royal Astronomical Society MSS W.2/1.2, 23; quoted in Miner p. 8
  25. ^ RAS MSS Herschel W.2/1.2, 24, quoted in Miner p. 8
  26. ^ Journal of the Royal Society and Royal Astronomical Society 1, 30; quoted in Miner p. 8
  27. ^ RAS MSS Herschel W1/13.M, 14 quoted in Miner p. 8
  28. A. J. Lexell (1783). "Recherches sur la nouvelle planete, decouverte par M. Herschel & nominee Georgium Sidus". Acta Academia Scientarum Imperialis Petropolitanae (1): 303–329.
  29. ^ Johann Elert Bode, Berliner Astronomisches Jahrbuch, p. 210, 1781, quoted in Miner p. 11
  30. ^ Miner p. 11
  31. ^ Dreyer, J. L. E., (1912). The Scientific Papers of Sir William Herschel. 1. Royal Society and Royal Astronomical Society. صفحة 100. ISBN . CS1 maint: extra punctuation (link) صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  32. ^ RAS MSS Herschel W.1/12.M, 20, quoted in Miner p. 12
  33. ^ "Voyager at Uranus". Nasa Jpl. 7 (85): 400–268. 1986. مؤرشف من الأصل فيعشرة فبراير 2006.
  34. ^ Francisca Herschel (1917). "The meaning of the symbol H+o for the planet Uranus". The Observatory. Bibcode:1917Obs....40..306H. مفقود أوفارغ |url= (مساعدة);
  35. Littmann, Mark (2004). Planets Beyond: Discovering the Outer Solar System. Courier Dover Publications. صفحات 10–11. ISBN .
  36. ^ Daugherty, Brian. "Astronomy in Berlin". Brian Daugherty. مؤرشف من الأصل في 18 أكتوبر 2018. اطلع عليه بتاريخ 24 مايو2007.
  37. ^ James Finch (2006). "The Straight Scoop on Uranium". allchemicals.info: The online chemical resource. مؤرشف من الأصل فيسبعة نوفمبر 2015. اطلع عليه بتاريخ 30 مارس 2009.
  38. ^ "Next Stop Uranus". 1986. مؤرشف من الأصل في 17 مايو2012. اطلع عليه بتاريخ 09 يونيو2007.
  39. ^ George Forbes (1909). "History of Astronomy". مؤرشف من الأصل فيستة نوفمبر 2018. اطلع عليه بتاريخ 07 أغسطس 2007.
  40. ^ O'Connor, J J and Robertson, E F (1996). "Mathematical discovery of planets". مؤرشف من الأصل في ثلاثة ديسمبر 2018. اطلع عليه بتاريخ 13 يونيو2007. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  41. ^ Peter J. Gierasch and Philip D. Nicholson (2004). "Uranus". NASA World Book. مؤرشف من الأصل فيستة يوليو2013. اطلع عليه بتاريخ 09 يونيو2007.
  42. ^ Lawrence Sromovsky (2006). "Hubble captures rare, fleeting shadow on Uranus". University of Wisconsin Madison. مؤرشف من الأصل فيسبعة نوفمبر 2015. اطلع عليه بتاريخ 09 يونيو2007.
  43. ^ Hammel, Heidi B. (September 5, 2006). "Uranus nears Equinox." (PDF). A report from the 2006 Pasadena Workshop. مؤرشف من الأصل (PDF) في 11 فبراير 2012.
  44. "Hubble Discovers Dark Cloud In The Atmosphere Of Uranus". Science Daily. مؤرشف من الأصل في 22 يونيو2019. اطلع عليه بتاريخ 16 أبريل 2007.
  45. ^ Bergstralh, Jay T.; Miner, Ellis; Matthews, Mildred (1991). Uranus. صفحات 485–486. ISBN . صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  46. ^ "Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000". IAU. 2000. مؤرشف من الأصل في 31 أكتوبر 2018. اطلع عليه بتاريخ 13 يونيو2007.
  47. ^ "Cartographic Standards" (PDF). NASA. مؤرشف من الأصل (PDF) في 21 ديسمبر 2016. اطلع عليه بتاريخ 13 يونيو2007.
  48. ^ "Coordinate Frames Used in MASL". 2003. مؤرشف من الأصل في أربعة ديسمبر 2004. اطلع عليه بتاريخ 13 يونيو2007.
  49. ^ "NASA's Uranus fact sheet". مؤرشف من الأصل في 26 يوليو2019. اطلع عليه بتاريخ 13 يونيو2007.
  50. ^ Nowak, Gary T. (2006). "Uranus: the Threshold Planet of 2006". مؤرشف من الأصل فيثمانية فبراير 2012. اطلع عليه بتاريخ 14 يونيو2007.
  51. Jacobson, R.A. (1992). "The masses of Uranus and its major satellites from Voyager tracking data and Earth-based Uranian satellite data". The Astronomical Journal. 103 (6): 2068–2078. Bibcode:1992AJ....103.2068J. doi:10.1086/116211.
  52. Podolak, M. (2000). "Further investigations of random models of Uranus and Neptune". Planet. Space Sci. 48: 143–151. Bibcode:2000P%26SS...48..143P تأكد من صحة قيمة |bibcode= length (مساعدة). doi:10.1016/S0032-0633(99)00088-4.
  53. Faure, Gunter (2007). "Uranus: What Happened Here?". In Faure, Gunter; Mensing, Teresa M. (المحرر). Introduction to Planetary Science. Springer Netherlands. doi:10.1007/978-1-4020-5544-7_18. صيانة CS1: أسماء متعددة: قائمة المحررون (link)
  54. Atreya, S. (2006). "Water-ammonia ionic ocean on Uranus and Neptune?" (PDF). Geophysical Research Abstracts. 8: 05179. مؤرشف من الأصل (pdf) في 18 سبتمبر 2019.
  55. ^ Weird water lurking inside giant planets, New Scientist,01 September 2010, Magazine issue 2776. نسخة محفوظة 15 أبريل 2015 على مسقط واي باك مشين.
  56. Hanel, R. (1986). "Infrared Observations of the Uranian System". Science. 233 (4759): 70–74. Bibcode:1986Sci...233...70H. doi:10.1126/science.233.4759.70. PMID 17812891.
  57. Pearl, J.C. (1990). "The Albedo, Effective Temperature, and Energy Balance of Uranus as Determined from Voyager IRIS Data". Icarus. 84: 12–28. Bibcode:1990Icar...84...12P. doi:10.1016/0019-1035(90)90155-3.
  58. ^ David Hawksett (2005). "Ten Mysteries of the Solar System: Why is Uranus So Cold?". Astronomy Now: 73.
  59. dePater, Imke (1991). gas Uranus' and Neptune's Atmospheres" (PDF). Icarus. 91: 220–233. doi:10.1016/0019-1035(91)90020-T. مؤرشف من الأصل (PDF) في 18 سبتمبر 2019.
  60. Herbert, Floyd (1987). "The Upper Atmosphere of Uranus: EUV Occultations Observed by Voyager 2" (PDF). J. Of Geophys. Res. 92: 15, 093–15, 109. doi:10.1029/JA092iA13p15093. مؤرشف من الأصل (PDF) في 13 مارس 2017.
  61. ^ Conrath, B.; et al. (1987). "The helium abundance of Uranus from Voyager measurements". Journal of Geophysical Research. 92: 15003–15010. Bibcode:1987JGR....9215003C. doi:10.1029/JA092iA13p15003. Explicit use of et al. in: |المؤلف= (مساعدة)
  62. ^ Lodders, Katharin (2003). "Solar System Abundances and Condensation Temperatures of the Elements". The Astrophysical Journal. 591: 1220–1247. Bibcode:2003ApJ...591.1220L. doi:10.1086/375492.
  63. Lindal, G.F. (1987). "The Atmosphere of Uranus: Results of Radio Occultation Measurements with Voyager 2". J. Of Geophys. Res. 92: 14, 987–15, 001. Bibcode:1987JGR....9214987L. doi:10.1029/JA092iA13p14987.
  64. Tyler, J.L. (1986). "Voyger 2 Radio Science Observations of the Uranian System: Atmosphere, Rings, and Satellites". Science. 233 (4759): 79–84. Bibcode:1986Sci...233...79T. doi:10.1126/science.233.4759.79. PMID 17812893.
  65. Bishop, J. (1990). "Reanalysis of Voyager 2 UVS Occultations at Uranus: Hydrocarbon Mixing Ratios in the Equatorial Stratosphere" (PDF). Icarus. 88: 448–463. doi:10.1016/0019-1035(90)90094-P. مؤرشف من الأصل (PDF) في 18 سبتمبر 2019.
  66. ^ dePater, Imke (1989). "Uranius Deep Atmosphere Revealed" (PDF). Icarus. 82 (12): 288–313. doi:10.1016/0019-1035(89)90040-7. مؤرشف من الأصل (PDF) في ثلاثة يونيو2016.
  67. Burgorf, Martin (2006). "Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy". Icarus. 184: 634–637. Bibcode:2006Icar..184..634B. doi:10.1016/j.icarus.2006.06.006.
  68. Encrenaz, Therese (2003). "ISO observations of the giant planets and Titan: what have we learnt?". Planet. Space Sci. 51: 89–103. Bibcode:2003P%26SS...51...89E تأكد من صحة قيمة |bibcode= length (مساعدة). doi:10.1016/S0032-0633(02)00145-9.
  69. Encrenaz, Th. (2004). "First detection of CO in Uranus" (PDF). Astronomy & Astrophysics. 413: L5–L9. doi:10.1051/0004-6361:20034637. مؤرشف من الأصل (PDF) في 21 سبتمبر 2017. اطلع عليه بتاريخ 05 أغسطس 2007.
  70. ^ Atreya, Sushil K. (2005). "Coupled Clouds and Chemistry of the Giant Planets – a Case for Multiprobes". Space Sci. Rev. 116: 121–136. Bibcode:2005SSRv..116..121A. doi:10.1007/s11214-005-1951-5.
  71. Summers, Michael E. (1989). "Photochemistry of the Atmosphere of Uranus". The Astrophysical Journal. 346: 495–508. Bibcode:1989ApJ...346..495S. doi:10.1086/168031.
  72. Young, Leslie A. (2001). "Uranus after Solstice: Results from the 1998 Novemberستة Occultation" (PDF). Icarus. 153: 236–247. doi:10.1006/icar.2001.6698. مؤرشف من الأصل (PDF) فيعشرة أكتوبر 2019.
  73. Herbert, Floyd (1999). "Ultraviolet Observations of Uranus and Neptune". Planet. Space Sci. 47: 1119–1139. Bibcode:1999P%26SS...47.1119H تأكد من صحة قيمة |bibcode= length (مساعدة). doi:10.1016/S0032-0633(98)00142-1.
  74. ^ Trafton, L.M. (1999). "H2 Quadrupole and H3+ Emission from Uranus: the Uranian Thermosphere, Ionosphere, and Aurora". The Astrophysical Journal. 524: 1059–1023. Bibcode:1999ApJ...524.1059T. doi:10.1086/307838.
  75. ^ Encrenaz, Th. (2003). in Uranus" (PDF). Planetary and Space Science. 51: 1013–1016. doi:10.1016/j.pss.2003.05.010. مؤرشف من الأصل (PDF) فيتسعة أغسطس 2017.
  76. ^ Lam, Hoanh An (1997). "Variation in the H+3 emission from Uranus". The Astrophysical Journal. 474: L73–L76. Bibcode:1997ApJ...474L..73L. doi:10.1086/310424.
  77. Esposito, L.W. (2002). "Planetary rings". Reports on Progress in Physics. 65: 1741–1783. doi:10.1088/0034-4885/65/12/201. ISBN . مؤرشف من الأصل في 17 ديسمبر 2019.
  78. "Voyager Uranus Science Summary". NASA/JPL. 1988. مؤرشف من الأصل في 14 سبتمبر 2018. اطلع عليه بتاريخ 09 يونيو2007.
  79. ^ ". BBC News. April 19, 2007. مؤرشف من الأصل في 23 أغسطس 2017. اطلع عليه بتاريخ 19 أبريل 2007.
  80. ^ "Did William Herschel Discover The Rings Of Uranus In The 18th Century?". Physorg.com. 2007. مؤرشف من الأصل في 11 فبراير 2012. اطلع عليه بتاريخ 20 يونيو2007.
  81. Elliot, J. L.; Dunham, E.; Mink, D. (1977). "The rings of Uranus". Cornell University. مؤرشف من الأصل في 25 أغسطس 2017. اطلع عليه بتاريخ 09 يونيو2007. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  82. ^ "NASA's Hubble Discovers New Rings and Moons Around Uranus". Hubblesite. 2005. مؤرشف من الأصل فيسبعة نوفمبر 2016. اطلع عليه بتاريخ 09 يونيو2007.
  83. dePater, Imke (2006). "New Dust Belts of Uranus: Two Ring, red Ring, Blue Ring". Science. 312 (5770): 92–94. Bibcode:2006Sci...312...92D. doi:10.1126/science.1125110. PMID 16601188.
  84. ^ Sanders, Robert (2006-04-06). "Blue ring discovered around Uranus". UC Berkeley News. مؤرشف من الأصل في 20 مايو2019. اطلع عليه بتاريخ 03 أكتوبر 2006.
  85. ^ Stephen Battersby (2006). "Blue ring of Uranus linked to sparkling ice". NewScientistSpace. مؤرشف من الأصل فيستة يوليو2008. اطلع عليه بتاريخ 09 يونيو2007.
  86. Ness, Norman F. (1986). "Magnetic Fields at Uranus". Science. 233 (4759): 85–89. Bibcode:1986Sci...233...85N. doi:10.1126/science.233.4759.85. PMID 17812894.
  87. Russell, C.T. (1993). "Planetary Magnetospheres". Rep. Prog. Phys. 56: 687–732. doi:10.1088/0034-4885/56/6/001.
  88. ^ Stanley, Sabine (2004). "Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields" (PDF). Letters to Nature. 428 (6979): 151–153. doi:10.1038/nature02376. PMID 15014493. مؤرشف من الأصل (PDF) في August 7, 2007. اطلع عليه بتاريخ 05 أغسطس 2007.
  89. Krimigis, S.M. (1986). "The Magnetosphere of Uranus: Hot Plasma and radiation Environment". Science. 233 (4759): 97–102. Bibcode:1986Sci...233...97K. doi:10.1126/science.233.4759.97. PMID 17812897.
  90. ^ "Voyager: Uranus: Magnetosphere". NASA. 2003. مؤرشف من الأصل في 31 يناير 2017. اطلع عليه بتاريخ 13 يونيو2007.
  91. ^ Bridge, H.S. (1986). "Plasma Observations Near Uranus: Initial Results from Voyager 2". Science. 233 (4759): 89–93. Bibcode:1986Sci...233...89B. doi:10.1126/science.233.4759.89. PMID 17812895.
  92. Emily Lakdawalla (2004). "No Longer Boring: 'Fireworks' and Other Surprises at Uranus Spotted Through Adaptive Optics". The Planetary Society. مؤرشف من الأصل في 25 مايو2006. اطلع عليه بتاريخ 13 يونيو2007.
  93. Hammel, H.B. (2005). "Uranus in 2003: Zonal winds, banded structure, and discrete features" (PDF). Icarus. 175: 534–545. doi:10.1016/j.icarus.2004.11.012. مؤرشف من الأصل (PDF) في 27 نوفمبر 2007.
  94. Rages, K.A. (2004). "Evidence for temporal change at Uranus' south pole". Icarus. 172: 548–554. Bibcode:2004Icar..172..548R. doi:10.1016/j.icarus.2004.07.009.
  95. Sromovsky, L.A.; Fry, P.M.; Hammel, H.B.; De Pater, I.; Rages, K.A.; Showalter, M.R.; Van Dam, M.A.; et al. (2009). "Uranus at equinox: Cloud morphology and dynamics". Icarus. 203 (1): 265–286. Bibcode:2009Icar..203..265S. doi:10.1016/j.icarus.2009.04.015. Explicit use of et al. in: |الأخير4= (مساعدة)
  96. Karkoschka, Erich (2001). "Uranus' Apparent Seasonal Variability in 25 HST Filters". Icarus. 151: 84–92. Bibcode:2001Icar..151...84K. doi:10.1006/icar.2001.6599.
  97. Hammel, H.B. (2005). "New cloud activity on Uranus in 2004: First detection of a southern feature at 2.2 µm" (PDF). Icarus. 175: 284–288. doi:10.1016/j.icarus.2004.11.016. مؤرشف من الأصل (PDF) في 27 نوفمبر 2007.
  98. Sromovsky, L. "Hubble Discovers a Dark Cloud in the Atmosphere of Uranus" (PDF). physorg.com. مؤرشف من الأصل (PDF) في 11 فبراير 2012. اطلع عليه بتاريخ 22 أغسطس 2007.
  99. Hammel, H.B. (2007). "Long-term atmospheric variability on Uranus and Neptune". Icarus. 186: 291–301. Bibcode:2007Icar..186..291H. doi:10.1016/j.icarus.2006.08.027.
  100. ^ Hammel, H.B. (2001). "New Measurements of the Winds of Uranus". Icarus. 153: 229–235. Bibcode:2001Icar..153..229H. doi:10.1006/icar.2001.6689.
  101. ^ Devitt, Terry (2004). "Keck zooms in on the weird weather of Uranus". University of Wisconsin-Madison. مؤرشف من الأصل في 17 أغسطس 2007. اطلع عليه بتاريخ 24 ديسمبر 2006.
  102. Lockwood, G.W. (2006). "Photometric variability of Uranus and Neptune, 1950–2004". Icarus. 180: 442–452. Bibcode:2006Icar..180..442L. doi:10.1016/j.icarus.2005.09.009.
  103. ^ Klein, M.J. (2006). "Long-term variations in the microwave brightness temperature of the Uranus atmosphere". Icarus. 184: 170–180. Bibcode:2006Icar..184..170K. doi:10.1016/j.icarus.2006.04.012.
  104. Hofstadter, Mark D. (2003). "Seasonal change in the deep atmosphere of Uranus". Icarus. 165: 168–180. Bibcode:2003Icar..165..168H. doi:10.1016/S0019-1035(03)00174-X.
  105. Thommes, Edward W. (1999). "The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System" (PDF). Nature. 402 (6762): 635–638. doi:10.1038/45185. PMID 10604469. مؤرشف من الأصل (PDF) في 21 مايو2019.
  106. Brunini, Adrian (1999). "Numerical simulations of the accretion of Uranus and Neptune". Plan. Space Sci. 47: 591–605. Bibcode:1999P%26SS...47..591B تأكد من صحة قيمة |bibcode= length (مساعدة). doi:10.1016/S0032-0633(98)00140-8.
  107. Sheppard, Scott S. (2006). "An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness". The Astronomical Journal. 129: 518–525. doi:10.1086/426329. مؤرشف من الأصل في 26 مارس 2019.
  108. ^ "Uranus". nineplanets.org. مؤرشف من الأصل فيسبعة يوليو2019. اطلع عليه بتاريخ 03 يوليو2007.
  109. ^ Hussmann, Hauke (2006). "Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects". Icarus. 185: 258–273. Bibcode:2006Icar..185..258H. doi:10.1016/j.icarus.2006.06.005.
  110. ^ Tittemore, W. C. (1990). "Tidal evolution of the Uranian satellites III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities". Icarus. Elsevier Science. 85 (2): 394–443. doi:10.1016/0019-1035(90)90125-S.
  111. ^ Pappalardo, R. T. (1997-06-25). "Extensional tilt blocks on Miranda: Evidence for an upwelling origin of Arden Corona". Journal of Geophysical Research. Elsevier Science. 102 (E6): 13, 369–13, 380. doi:10.1029/97JE00802. مؤرشف من الأصل في 27 سبتمبر 2012.
  112. ^ Chaikin, Andrew (2001-10-16). "Birth of Uranus' Provocative Moon Still Puzzles Scientists". Space.Com. ImaginovaCorp. مؤرشف من الأصل في 08 نوفمبر 2001. اطلع عليه بتاريخ 07 ديسمبر 2007.
  113. ^ Tittemore, W.C. (1990). "Tidal Heating of Ariel". Icarus. 87: 110–139. Bibcode:1990Icar...87..110T. doi:10.1016/0019-1035(90)90024-4.
  114. ^ "Voyager: The Interstellar Mission: Uranus". JPL. 2004. مؤرشف من الأصل فيسبعة مارس 2017. اطلع عليه بتاريخ 09 يونيو2007.
  115. ^ Vision and Voyages for Planetary Science in the Decade 2013–2022 نسخة محفوظة 06 سبتمبر 2015 على مسقط واي باك مشين.
  116. ^ Parker, Derek and Julia Aquarius. New York: Mitchell Beazley/Ballantine Book. 1972. صفحة 14.
  117. ^ "Uranium". The American Heritage Dictionary of the English Language (الطبعة 4th edition). Houghton Mifflin Company. مؤرشف من الأصل في 27 يوليو2011. اطلع عليه بتاريخ 20 أبريل 2010. صيانة CS1: نص إضافي (link)

مصادر مكتوبة

  • Miner, Ellis D. (1998). Uranus: The Planet, Rings and Satellites. New York: John Wiley and Sons. ISBN . .

وصلات خارجية

  • صفحة أورانوس من مسقط المرصد الجنوبي الأوروبي.
  • معلومات عن أورانوس من النشرة الدورية لوكالة ناسا.
  • ملف أورانوس من مسقط استكشاف النظام الشمسي التابع لوكالة الناسا.
  • تقارير إخبارية من 22 ديسمبر سنة 2005 عن اكتشاف حلقات وأقمار جديدة تابعة لأورانوس
  • الأقمار والحلقات الجديدة المكتشفة في أورانوس، من مسقط SPACE.com.
  • حلقتين إضافيتين اكتشفتا حول أورانوس، MSNBC.
  • الكواكب—أورانوس مرشد للأولاد حول أورانوس.
  • أزهر الربيع على أورانوس!
  • أورانوس من مختبر الدفع النفاث.
تاريخ النشر: 2020-06-01 23:03:56
التصنيفات: أورانوس, أجرام فلكية اكتشفت في 1781, أجسام فلامستيد, اكتشافات ويليام هيرشل, اكتشافات من قبل وليام هيرشل, الكواكب الخارجية, عمالقة جليدية, عمالقة غازية, صفحات تستعمل قالبا ببيانات مكررة, صفحات ويكي بيانات بحاجة لتسمية عربية, صفحات بها بيانات ويكي بيانات, Webarchive template archiveis links, أخطاء CS1: بيب كود, قالب أرشيف الإنترنت بوصلات واي باك, CS1 maint: extra punctuation, صيانة CS1: أسماء متعددة: قائمة المؤلفون, صفحات تحتوي مراجع ويب بدون رابط تشعبي, صفحات تحتوي مراجع ويب بتاريخ وصول وبدون رابط تشعبي, صيانة CS1: أسماء متعددة: قائمة المحررون, أخطاء CS1: استخدام صريح للوسيط et al., صيانة CS1: نص إضافي, صفحات بها مراجع ويكي بيانات, صفحات تستخدم خاصية P575, صفحات تستخدم خاصية P138, صفحات تستخدم خاصية P2583, صفحات تستخدم خاصية P397, صفحات تستخدم خاصية P2120, مقالات تحتوي نصا بالإنجليزية, قالب تصنيف كومنز بوصلة كما في ويكي بيانات, مقالات مختارة, مقالات مختارة بحاجة لاستبدال القالب, صفحات تستخدم خاصية P214, صفحات تستخدم خاصية P244, صفحات تستخدم خاصية P227, صفحات تستخدم خاصية P268, صفحات بها وصلات إنترويكي, بوابة أورانوس/مقالات متعلقة, بوابة المجموعة الشمسية/مقالات متعلقة, بوابة علم الفلك/مقالات متعلقة, جميع المقالات التي تستخدم شريط بوابات, الصفحات التي لا تقبل ربط البوابات المعادل

مقالات أخرى من الموسوعة

سحابة الكلمات المفتاحية، مما يبحث عنه الزوار في كشاف:

آخر الأخبار حول العالم

بودريقة قبل انطلاق جمع عام الرجاء: "أنا متفائل!"

المصدر: الأول - المغرب التصنيف: سياسة
تاريخ الخبر: 2023-05-26 18:27:38
مستوى الصحة: 55% الأهمية: 56%

7 لاعبين مهددين في الاتحاد بالغياب عن ختام دوري روشن

المصدر: اليوم - السعودية التصنيف: سياسة
تاريخ الخبر: 2023-05-26 18:26:31
مستوى الصحة: 55% الأهمية: 61%

المغرب.. مهد حركات التحرر الإفريقية

المصدر: موقع الدار - المغرب التصنيف: مجتمع
تاريخ الخبر: 2023-05-26 18:26:50
مستوى الصحة: 49% الأهمية: 70%

بودريقة قبل انطلاق جمع عام الرجاء: "أنا متفائل!"

المصدر: الأول - المغرب التصنيف: سياسة
تاريخ الخبر: 2023-05-26 18:27:44
مستوى الصحة: 48% الأهمية: 58%

رسميا/ انتخاب بودريقة رئيسا للرجاء الرياضي خلفا للبدراوي

المصدر: البطولة - المغرب التصنيف: رياضة
تاريخ الخبر: 2023-05-26 21:15:49
مستوى الصحة: 58% الأهمية: 58%

تقرير.. المغرب تعرض لـ 71 مليون تهديد إلكتروني في سنة واحدة

المصدر: الأول - المغرب التصنيف: سياسة
تاريخ الخبر: 2023-05-26 18:28:03
مستوى الصحة: 46% الأهمية: 67%

تقرير.. المغرب تعرض لـ 71 مليون تهديد إلكتروني في سنة واحدة

المصدر: الأول - المغرب التصنيف: سياسة
تاريخ الخبر: 2023-05-26 18:27:58
مستوى الصحة: 57% الأهمية: 63%

تحميل تطبيق المنصة العربية