بوتاسيوم

عودة للموسوعة
كالسيوم → بوتاسيوم ← آرغون
Na

K

Rb
19K
المظهر
رمادي فضي


الخطوط الطيفية للبوتاسيوم
الخواص العامة
الاسم، العدد، الرمز بوتاسيوم، 19، K
تصنيف العنصر فلز قلوي
المجموعة، الدورة، المستوى الفرعي 1، 4، s
الكتلة الذرية 39.0983
توزيع إلكتروني Ar]; 4s1]
توزيع الإلكترونات لكل غلاف تكافؤ 2, 8, 8, 1 (صورة)
الخواص الفيزيائية
الطور صلب
الكثافة (عند درجة حرارة الغرفة) 0.862
كثافة السائل عند نقطة الانصهار 0.828 غ·سم−3
نقطة الانصهار 336.53 ك، 63.38 °س، 146.08 °ف
نقطة الغليان 1032 ك، 759 °س، 1398 °ف
نقطة ثلاثية 336.35 كلفن (63°س)، 
 كيلوباسكال
حرارة الانصهار 2.33
حرارة التبخر 76.9
السعة الحرارية (عند 25 °س) 29.6 جول·مول−1·كلفن−1
الخواص الذرية
أرقام الأكسدة 1
(أكاسيده قاعدية قوية)
الكهرسلبية 0.82 (مقياس باولنغ)
طاقات التأين الأول: 418.8
الثاني: 3052 كيلوجول·مول−1
الثالث: 4420 كيلوجول·مول−1
نصف قطر ذري 227 بيكومتر
نصف قطر تساهمي 12±203 بيكومتر
نصف قطر فان دير فالس 275 بيكومتر
خواص أخرى
البنية البلورية مكعب مركزي الجسم
المغناطيسية مغناطيسية مسايرة
مقاومة كهربائية 72 نانوأوم·متر (20 °س)
الناقلية الحرارية 102.5 واط·متر−1·كلفن−1 (300 كلفن)
التمدد الحراري 83.3 ميكرومتر·متر−1·كلفن−1 (25 °س)
سرعة الصوت (سلك رفيع) 2000 متر/ثانية (20 °س)
معامل يونغ 3.53 غيغاباسكال
معامل القص 1.3 غيغاباسكال
معامل الحجم 3.1 غيغاباسكال
صلادة موس 0.4
صلادة برينل 0.363 ميغاباسكال
رقم CAS 7440-09-7
النظائر الأكثر ثباتاً
الموضوعة الرئيسية: نظائر البوتاسيوم
النظائر الوفرة الطبيعية عمر النصف نمط الاضمحلال طاقة الاضمحلال MeV ناتج الاضمحلال
39K 93.26% 39K هونظير مستقر وله 20 نيوترون
40K 0.012% 1.248(3)×109 سنة 1.311 40Ca
ε 1.505 40Ar
1.505 40Ar
41K 6.73% 41K هونظير مستقر وله 22 نيوترون

البوتاسيوم هوعنصر كيميائي رمزه K (من اللاتينية kalium عبر العربية القَلْيَة) وعدده الذرّي 19. ينتمي العنصر في الجدول الدوري إلى مجموعة الفلزّات القلوية، إذ هوثالث عناصر المجموعة الأولى، كما يقع ضمن عناصر الدورة الرابعة. البوتاسيوم فلزٌّ لونه أبيض فضّي، وهوطري بالشكل الكافي بحيث يمكن بتره بسكّين. يتفاعل البوتاسيوم بسرعة مع الأكسجين الموجود في الهواء الجوّي لتتشكّل عليه طبقة رقيقة من بيروكسيد البوتاسيوم الأبيض بعد ثوانٍ من التعرّض. عُزِلَ هذا العنصر الكيميائي لأوّل مرّة من البوتاس، وهورماد يُستخرَج من بعض النباتات مثل أشنان القلي، وكان يسمّى بالعربية القَلْيَة.

يحوي البوتاسيوم على إلكترون تكافؤ وحيد في الغلاف الإلكتروني الخارجي، والذي يمكن حتى يتخلّى عنه بسهولة مشكلّاً أيون موجب؛ لذلك فالبوتاسيوم نشيط كيميائياً، ويشكّل الكثير من الأملاح؛ وبسبب النشاط الكيميائي الكبير فلا يوجد هذا العنصر في الطبيعة بشكله العنصري الحرّ الطبيعي، إنّما فقط على شكل أملاح، فهويوجد منحلّاً في ماء البحر بنسبة مقدارها 0.04% وزناً. كما يدخل البوتاسيوم في هجريب الكثير من المعادن مثل الأورثوكلاز، وهومكوّن رائج للغرانيت وعددٍ من الصخور النارية الأخرى.

يشبه البوتاسيوم في خواصّه الكيميائية عنصر الصوديوم الذي يسبقه في مجموعة الفلزّات القلوية بشكل كبير، وذلك من حيث طاقة التأيّن ونمط التفاعلات الكيميائية. فالبوتاسيوم العنصري يتفاعل على سبيل المثال بشكلٍ عنيف مع الماء أيضاً مولّداً كمّية كافية من الحرارة لإشعال غاز الهيدروجين الناتج عن التفاعل، ومحترقاً بلهبٍ ليلكي. هناك ثلاثة نظائر طبيعية للبوتاسيوم، منها K (بوتاسيوم-40) المشعّ، وبما أنّ البوتاسيوم يوجد طبيعياً في جسم الإنسان، لذلك فإنّ هناك كمّية من الإشعاع الطبيعي في الجسم ناتجة عن هذا العنصر.

يعدّ البوتاسيوم ذا أهمّية حيوية لجسم الإنسان على كافّة مستويات الخلايا في الجسم، فهوإلى جانب الصوديوم في مضخّة الصوديوم والبوتاسيوم، والتي تساعد في الحفاظ على جهد الراحة ونقل الإشارة وتنظيم أداء الخلية بشكل طبيعي.. يؤدّي اختلال المستويات الطبيعية للبوتاسيوم في الجسم، سواءً في العوز (النقص) أوالفرط، إلى حدوث عوارض سقمية متعدّدة، تتضمّن على سبيل المثال الاختلال في نَظْم ضربات القلب. توجد هناك الكثير من المصادر الغذائية الطبيعية الحاوية على البوتاسيوم مثل الخضار والفواكه الطازجة.

للبوتاسيوم الكثير من التطبيقات الصناعية، من بينها دخوله في صناعة المنظّفات والأسمدة.

التاريخ وأصل التسمية

عُرفَ البوتاس منذ القدم، وهورمادٌ يستخرَج من بعض النباتات مثل أشنان القلي، وكان يسمّى في المنطقة العربية بعدّة أسماء منها القَلْيَة. إلّا أنّه لم يكن يعتقَد على الأغلب أنّها مادة مختلفة عن باقي أملاح معادن الصوديوم، إذ كان يُتعامَل على أنها مادة ملحية مثل باقي الأملاح.

كان غيورغ إرنست شتال من أوائل من حصل على براهين تجريبية دفعته للاقتراح بوجود اختلاف جوهري بين أملاح الصوديوم والبوتاسيوم سنة 1702؛ ثمّ تمكّن هنري لويس دوهاميل دومونسومن البرهنة على وجود ذلك الاختلاف سنة 1736. لم يُعرَف الهجريب الكيميائي الدقيق لمركّبات البوتاسيوم والصوديوم، كما لم تُعرَف الحالة العنصرية لكليهما أيضاً، لذلك لم يُدرجْهُما أنطوان لافوازييه في قائمة العناصر الكيميائية التي نشرها سنة 1789. لفترةٍ طويلة، كان التطبيق الوحيد ذوالأهمّية للبوتاس ينحصر في إنتاج الزجاج وفي عمليات القَصْر (التبييض) وفي صناعة الصابون، وكذلك في تحضير البارود على هيئة نترات البوتاسيوم.

همفري ديفي.

عَزَل همفري ديفي فلزّ البوتاسيوم لأوّل مرّة سنة 1807 من مصهور البوتاس الكاوي (هيدروكسيد البوتاسيوم) بعمليّة تحليل كهربائي باستخدام عمود فلطائي، والذي كان حديث الاختراع حينئذٍ. يعدّ البوتاسيوم بذلك أوّل الفلزّات المعزولة بعملية تحليل كهربائي. في فترةٍ لاحقةٍ من ذات السنة تمكّن ديفي من عزل عنصر الصوديوم بنفس الأسلوبـ وذلك من الصودا الكاوية، ممّا برهن بشكل بتري عملي أنّ الفلزّين متمايزَين عن بعضهما. أطلقَ ديفي على العنصر المُكتَشف حديثاً اسم بوتاسيوم، وذلك اشتقاقاً من لفظ البوتاس؛ في حين أنّ الاسم اللاتيني للعنصر هوكاليوم Kalium، وتعود جذور تلك التسمية إلى الحدثة العربية «القَلْيَه» (رماد الأشنان)، والتي لها صلة مع حدثة قلوي. بناءً على الاسم اللاتيني مُنِحَ العنصر الرمزَ K. كان للكيميائي الألماني مارتن كلابروت دوراً في ذلك، إذ اكتشف سنة 1797 وجود البوتاس في معدَنَي الليوسيت والليبيدوليت، ثم تابع أبحاثه ليعلن اكتشاف عنصر جديد، واقترح إطلاق اسم «كالي kali» عليه. في سنة 1809 اقترح لودفيج فيلهلم غيلبرت على ديفي حتى يسمّي العنصر الذي اكتشقه باسم كاليوم؛ ثم قام يونس ياكوب بيرسيليوس سنة 1814 باعتماد التسمية الأخيرة عند تصنيفه للعناصر، وكان من منح ذلك العنصر الرمزَ الكيميائي K. لا تزال تسمية «كاليوم» مستخدَمة في الدول الناطقة باللغة الألمانية.

كان لاكتشاف يوستوس فون ليبيغ سنة 1840 أنّ البوتاسيوم مهمٌ حيوياً للنباتات، دوراً في زيادة الطلب على أملاح البوتاسيوم. أدّى اكتشاف خامات طبيعية من المعادن الحاوية على كلوريد البوتاسيوم سنة 1868 بالقرب من شتاسفورت في ألمانيا إلى زيادة إنتاج الأسمدة الحاوية على البوتاسيوم، وذلك على نطاق صناعي.

الأصل والوفرة الطبيعية

يدخل البوتاسيوم في هجريب الفلسبار.

يتشكّل البوتاسيوم في المستعرات العظمى من عملية التخليق النووي من الذرّات والعناصر الأخفّ، وخاصّة داخل المستعر الأعظم من النمط الثاني (II) عن طريق عملية حرق الأكسجين المتفجّرة. يتشكّل K أيضاً بواسطة عملية التقاط النيوترون البطيئة وكذلك من عملية احتراق النيون.

يحتلّ البوتاسيوم المرتبة العشرين من حيث وفرة العناصر الكيميائية في المجموعة الشمسية، والمرتبة السابعة عشرة من حيث وفرة العناصر وزناً في كوكب الأرض. يشكّل البوتاسيوم حوالي 2.6% وزناً من القشرة الأرضية، وهوبذلك يحتلّ المرتبة السابعة من حيث وفرة العناصر في تلك الطبقة. يبلغ هجريز البوتاسيوم في ماء البحر مقدار 0.39 غ/ل، وهوأقلّ بحوالي 27 مرّة من هجريز الصوديوم.

لا يوجد البوتاسيوم على شكله العنصري في الطبيعة بسبب نشاطه الكيميائي الكبير، فهويتفاعل مع أكسجين الهواء ومع الماء؛ يعدّ معدن الأرثوكلاز (فلسبار البوتاسيوم) من المعادن الشائعة المكوّنة للصخور. يحوي الغرانيت على سبيل المثال 5% من البوتاسيوم؛ كما يدخل البوتاسيوم في هجريب عددٍ آخر من المعادن مثل السيلفيت (KCl) والكارناليت (KCl·MgCl2·6H2O) والكاينيت (MgSO4·KCl·3H2O) واللانغباينيت (MgSO4·K2SO4)، وهي معادن توجد في المتبخّرات الكبيرة المترسّبة في كافّة أنحاء العالم، وتتميّز بأن مؤلّفة من طبقات متباينة في الانحلالية، إذ تكون أقلّها انحلاليةً متوضّعة في الأسفل والأكثر انحلاليةً في الأعلى. تتشكّل ترسّبات النتر (نترات البوتاسيوم) من تفكّك المواد العضوية، خاصّة في الكهوف، وتحت شروط خاصة.

الإنتاج والتحضير

التنقيب والتعدين

سلفيت من المكسيك.
مونتي كالي، وهي كومة متراكمة من خام البوتاس المنقّب عنه لهجريزه. تتواجد في هيسن بألمانيا، وتتكون في معظمها من كلوريد الصوديوم.

إن وجود أملاح البوتاسيوم مثل الكارناليت، اللانغباينيت، البوليهاليت والسلفيت من المتبخّرات المترسّبة في قعور البحيرات القديمة وقيعان البحار، يجعل استخراجها من هذه البيئات مجدٍ تجارياً. يُنقّب عن المصدر الرئيسي للبوتاسيوم (بوتاس) في كندا وروسيا وكازاخستان وإسرائيل والولايات المتحدة والأردن؛ بالإضافة إلى مناطق أخرى في أنحاء العالم. كانت الطبقات الرسوبية التي تمّ التنقيب عنها في شتاسفورت بألمانيا أولى الاكتشافات على هذا الصعيد؛ إلّا أنّ هذه الطبقات تمتدّ من بريطانيا العظمى عبر ألمانيا إلى بولندا، وتتواجد في الزيخشتين وترسّبت في أواسط وأواخر العصر البرمي. تتواجد هذه الطبقات الرسوبية أيضاً كندا في الحوض الرسوبي "إلك بوينت غروب" وترسّبت في منتصف العصر الديفوني؛ إلّا أنّ أكبر الطبقات الرسوبية إطلاقا التي عثر عليها تقع بحوالي 1000 متر تحت سطح مقاطعة ساسكاتشوان الكندية؛ وتعد شركة البوتاس لساسكاتشوان (بوتاس كورب)، والتي تُعهد الآن باسم نيوترين، الشركةَ الرئيسية المنقبة عن البوتاس في ساسكاتشوان. يُستخدم الماء في البحر الميت بواسطة الأردن وإسرائيل مصدراً للبوتاس، في حين أنّ الهجريز في المحيطات العادية منخفض كثيراً للإنتاج التجاري حسب الأسعار الحالية.

الاستخلاص الكيميائي

تُستخدَم الكثير من الطرق في فصل أملاح البوتاسيوم عن المكوّنات التي تحتوي الصوديوم والمغنيزيوم؛ وأكثرُ هذه الطرق استخداماً هي الترسيب التجزيئي باستخدام اختلافات قابلية ذوبان الأملاح في درجات حرارة مختلفة. يُستخدم الفصل الكهروستاتيكي لخليط الملح كذلك في بعض المناجم، أمّا بقايا الصوديوم والمغنيزيوم الناتجَين فهي إمّا حتى تُخزّن تحت الأرض أوفوقها على شكل كومة ركامية. ينتهي مآل معظم أملاح البوتاسيوم المنقب عنها بعد المعالجة على شكل ملح كلوريد البوتاسيوم. على نطاق الصناعات المعدنية يشار إلى كلوريد البوتاسيوم إما بالبوتاس أوموريات (كلوريد) البوتاس أوبالاختصار MOP.

يمكن حتى يُستخلَص البوتاسيوم النقي عبر التحليل الكهربائي لهيدروكسيده في عملية لم تتغيّر إلّا قليلاً منذ أوّل استخدام لها بواسطة همفري ديفي سنة 1807. رغم أنّ عملية التحليل الكهربائي طُوِّرت واستُخدِمت على نطاق صناعي منذ العقد 1920، إلّا أنّ الطريقة الحرارية عبر مفاعلة الصوديوم مع كلوريد البوتاسيوم في عملية توازن كيميائي أصبحت الطريقة السائدة في خمسينات القرن العشرين؛ حيث يتمّ إنتاج سبيكة صوديوم-بوتاسيوم عبر تغيير وقت التفاعل وكمّية الصوديوم المستخدم في التفاعل. كما كانت تستخدم عملية غريسهايمر أيضاً لإنتاج البوتاسيوم، والتي تتضمن تفاعل فلوريد البوتاسيوم مع كربيد الكالسيوم.

(الطريقة الحرارية)
(عملية غريسهايمر)

يبلغ ثمن معدن (فلز) البوتاسيوم بدرجة كاشف حوالي 22 دولار أمريكي للكيلوغرام سنة 2010 (ثمن الجملة)؛في حين أنّ درجات النقاوة الأقل منه أرخص بشكل معتبر. يتميّز سوق البوتاسيوم بتقلّبه، لأن التخزين طويل المدى لهذا الفلزّ صعب، إذ يجب تخزينه في جوٍّ تحت غاز خامل وجافّ أوفي زيت معدني لامائي لمنع تكوّن طبقة سطحية من فوق أكسيد البوتاسيوم، وهي ذات خواص متفجّرة وحسّاسة للضغط وتنفجر عند خدشها؛ كما أنّ الانفجار الناتج يُحدث حريقاً يصعُب إطفاؤه عادةً.

النظائر

يوجد هناك خمسٌ وعشرونَ نظيراً معروفاً للبوتاسيوم، ثلاثةٌ منها متوفّرة طبيعياً وهي بوتاسيوم-39 39K بنسبة 93.3%، وبوتاسيوم-40 40K بنسبة 0.0117% وبوتاسيوم-41 41K بنسبة 6.7%. يعدّ نظير البوتاسيوم-40 من النظائر المشعّة، ويبلغ عمر النصف له مقدار 1.250×109 سنة، وهويضمحلّ إمّا إلى نظير الآرغون 40Ar المستقرّ عبر عملية التقاط إلكترون أوانبعاث البوزيترون (11.2%) أوإلى نظير الكالسيوم 40Ca المستقرّ عبر عملية اضمحلال بيتا (88.8%).

يستفاد من الاضمحلال الإشعاعي لنظير البوتاسيوم-40 في عملية تأريخ بنظائر بوتاسيوم-آرغون K-Ar، وذلك لتقدير عمر العيّنات الصخرية. وتعتمد الطريقة على افتراض أنّ الصخور لم تكن حاوية على أيّ آرغون عند نشوئها، وأنّ كلّ الآرغون الموجود له أصل إشعاعي من نظير البوتاسيوم؛ وعند قياس نسبة الآرغون إلى نسبة البوتاسيوم يمكن تقدير عمر الصخور. تعدّ معادن البيوتيت والمسكوفيت والهورنبلند والفلسبار من أمثلة أنواع الصخور التي يمكن تقدير عمرها بهذه الطريقة؛ بالإضافة إلى العيّنات الصخرية الكاملة البركانية والنارية في بعض الأحيان. في تطبيقاتٍ أخرى يُستفاد من نظائر البوتاسيوم في الوسم الإشعاعي في دراسات التجوية ودورة المغذيات، خاصّةً أنّ البوتاسيوم من المغذّيات الصغرى لعددٍ كبيرٍ من الكائنات الحيّة. من حيث الترتيب، يعدّ نظير البوتاسيوم-40 مثلاً أكبرَ مصدرٍ للإشعاع الطبيعي عند البشر والحيوانات، وذلك بشكل أكبر من الكربون-14 14C. في جسم إنسان كتلته 70 كغ فإنّ هناك حوالي 4400 نواةٍ من 40K تتضمحلّ كلّ ثانية. يبلغ النشاط الإشعاعي للبوتاسيوم الطبيعي مقدار 31 بيكريل لكلّ غرام.

الخواص الفيزيائية

اختبار اللهب للبوتاسيوم.

يوجد البوتاسيوم في الشروط القياسية من الضغط ودرجة الحرارة بالطور الصلب وذلك على شكل فلزّ له لون فضّي-رمادي، وله نقطة انصهار منخفضة نسبياً (63.5 °س). يعدّ البوتاسيوم ثاني أقلّ الفلزّات كثافةً بعد الليثيوم؛ وهوطري، بحيث يمكن بتره بالسكين عند تطبيق ضغط خفيف نسبياً. عند التعرّض للهواء يفقد البوتاسيوم لمعانه ويميل إلى تشكيل لون رمادي. يعطي اختبار اللهب للبوتاسيوم ومركّباته لوناً ليليكياً، وتكون ذروة الانبعاث فيه ذات طول موجة مقدارها 766.5 نانومتر.

وُجدَ باستخدام أسلوب المحاكاة بالحاسوب أنّه يمكن لفلزّ البوتاسيوم حتىقد يكون في الحالة الصلبة والحالة السائلة في الوقت نفسه عند تطبيق ضغوط مرتفعة للغاية.

الخواص الكيميائية

لذرّة البوتاسيوم المعتدلة 19 إلكتروناً، ويكون التوزيع الإلكتروني على الشكل Ar] 4s1]، والذي يشير إلى حتى الأغلفة الإلكترونية الداخلية مماثلة للتوزيع الإلكتروني المستقرّ للغاز النبيل المجاور، وهوعنصر الآرغون؛ كما يشير أيضاً إلى وجود إلكترون وحيد في الغلاف الإلكتروني الخارجي (غلاف التكافؤ). بسبب تلك العوامل المذكورة، وبالإضافة إلى أنّ طاقة التأيّن الأولى منخفضة نسبياً (مقدارها 418.8 كيلوجول/مول)، لذلك فإنّ ذرّة البوتاسيوم تميل في أغلب الأحيان إلى فقدان الإلكترون الخارجي وتشكيل أيون موجب أحادي الشحنة. يمكن لذرّة البوتاسيوم ضمن شروط خاصة حتى تكتسب إلكتروناً وتشكّل أيونات قلويد سالبة الشحنة K (تعهد باسم كاليد أوبوتاسيد). باللقاء، فإنّ طاقة التأيّن الثانية مرتفعة جدّاً (3052 كيلوجول/مول)، لأنّ إزالة إلكترونَين من الغلاف الإلكتروني للبوتاسيوم يزعزع الاستقرار في الغلاف الإلكتروني الثالث الداخلي الذي يؤمّنه مبدأ قاعدة الثمانيات، والموافق للتشكيل الإلكتروني لغاز الآرغون النبيل. بالتالي يعدّ البوتاسيوم عنصراً أحادي التكافؤ، ولا يميل إلى تشكيل مركّبات ذات حالة أكسدة أعلى من +1.

يصنّف عنصر البوتاسيوم كيميائياً ضمن مجموعة الفلزّات القلوية النشيطة كيميائياً، فهويتفاعل بعنفٍ مع أكسجين الهواء مشكّلاً بيروكسيد البوتاسيوم؛ وبشكل مماثل مع الأكسجين في الماء، إذ يتفاعل أيضاً بعنف وبشكل ناشر للحرارة مشكّلاً هيدروكسيد البوتاسيوم بالإضافة إلى غاز الهيدروجين. يمكن للبوتاسيوم حتى يتفاعل حتى بوجود آثار ضئيلة من الماء، لذلك يستخدم هووسبيكة صوديوم-بوتاسيوم السائلة NaK ضمن المجفّفات القويّة للمذيبات العضوية قبل عملية التقطير. بسبب الحساسية الكبيرة للبوتاسيوم تجاه الماء والهواء، فإنّ التفاعلات مع العناصر الأخرى ممكنة فقط تحت ظروف خاملة مثل العمل تحت غاز الآرغون. لا يتفاعل البوتاسيوم مع أغلب هيدروكرونات مثل الزيوت المعدنية أوالكيروسين. ينحلّ البوتاسيوم فوراً في الأمونيا وبشكلٍ جيّدٍ جدّاً (حتّى 480 غرام لكلّ 1000 غرام من الأمونيا عند 0° س)؛ ويتفاوت لون المحلول حسب الهجريز من الأزرق إلى الأصفر، وتمتلك تلك المحاليل موصلية كهربائية مرتفعة نسبياً. ففي محلولٍ نقيٍّ يتفاعل البوتاسيوم ببطءٍ مع الأمونيا ليشكّل أميد البوتاسيوم KNH2، ويمكن تحفيز هذا التفاعل بوجود آثار من أملاح فلز انتنطقي.

يعدّ البوتاسيوم من المختزلات القويّة (يوجد البوتاسيوم أسفل قائمة الجهود القياسية)، وهوقادرٌ على اختزال عددٍ من الأملاح إلى فلزّاتها الموافقة.

المركّبات الكيميائية

تمثيل لبنية مركّب فوق أكسيد البوتاسيوم KO2 الصلبة.

تعدّ حالة الأكسدة +1 الأكثر شيوعاً في مركّبات البوتاسيوم الكيميائية، حيث أنّ كاتيونات البوتاسيوم +K مستقرّة ويصعب جدّاً اختزالها إلى البوتاسيوم العنصري.

يتأكسد البوتاسيوم بسرعة أكبر من باقي الفلزّات، وغالباً ما يشكّل أكاسيداً متعدّدة كما هوالحال مع باقي الفلزّات القلوية ما عدا الليثيوم. هناك ثلاثة أكاسيد معروفة للبوتاسيوم، وهي أكسيد البوتاسيوم (K2O) وبيروكسيد البوتاسيوم (K2O2) وفوق أكسيد البوتاسيوم (KO2). يتشكّل بيروكسيد وفوق أكسيد (سوبر أكسيد) البوتاسيوم ضمن شروط خاصّة، وهي تحوي في هجريبها على رابطة أكسجين-أكسجين. تتفاعل أكاسيد البوتاسيوم بعنفٍ في الماء مشكّلةًً هيدروكسيد البوتاسيوم (KOH).

يعدّ هيدروكسيد البوتاسيوم من القلويّات القويّة، وهوينحلّ بشكل كبير جدّاً في الماء، حيث ينحلّ منه حتى 1.21 كغ لكلّ ليتر من الماء. يتفاعل KOH مع ثنائي أكسيد الكربون فوراً ليعطي كربونات البوتاسيوم K2CO3، وهويستخدم لإزالة الآثار من غاز CO2 في الجوّ.

على العموم تتّسم مركّبات البوتاسيوم بأنّها أيونية، وبسبب طاقة الإماهة المرتفعة لأيونات +K فإنّ لمركّبات البوتاسيوم انحلالية ممتازة في الماء. إنّ الأنواع الكيميائية الرئيسية للبوتاسيوم في محاليله المائية هي المعقّدات المُمَيَّهَة +K(H2O)]n]، حيث يمكن لـِ n حتى تكونستة أو7.

أيون البوتاسيوم عديم اللون في محاليله المائية، ومن الصعب جدّاً ترسيبه. من الطرق الممكنة لترسيب البوتاسيوم التفاعل مثلاً مع رباعي فينيل بورات الصوديوم وحمض كلوروالبلاتينيك وكوبالتي نتريت الصوديوم وذلك إلى رباعي فينيل بورات البوتاسيوم وسداسي كلوروبلاتينات البوتاسيوم وكوبالتي نتريت البوتاسيوم، على الترتيب.

الكشف عن البوتاسيوم

يمكن الكشف عن أيونات البوتاسيوم باستخدام كوبالتي نتريت الصوديوم في وجود حمض الخليك.

K3Co(NO2)6 (كوبالتي نتريت البوتاسيوم) هوراسب بلّوري أصفر، ولا يمكن القيام بهذا التفاعل في محلول قاعدي لأنّ Co(OH)3 سيترسّب عوضاً عن كوبالتي نتريت البوتاسيوم. كما لا يمكن القيام بهذا التفاعل كذلك في وجود حمض معدني لأنّ H3Co(NO2)6 سيتكوّن. توجد طريقة أخرى للكشف عن K+ بمعالجة ملح البوتاسيوم برباعي فينيل بورات الصوديوم.

الدور الحيوي

البوتاسيوم هوالعنصر الثامن أوالتاسع الأكثر شيوعاً في الجسم البشري حسب الكتلة (0.2%)، وهذا يعني أنّ شخصاً بالغاً يزن 60 كغ يحتوي على حوالي 120 غ من البوتاسيوم. يحتوي الجسم على كمّيات متساوية تقريباً من البوتاسيوم والكبريت والكلور، ولا يفوقه شيوعاً سوى الكالسيوم والفوسفور (مع استثناء العناصر الأكثر شيوعاً CHON). تتواجد أيونات البوتاسيوم في مجموعة واسعة ومتنوعة من البروتينات والإنزيمات.

وظيفية كيميائية حيوية

تؤثّر مستويات البوتاسيوم على الكثير من الوظائف الفيسيولوجية بما في ذلك:

  • جهد الغشاء الخلوي في حالة الاسترخاء وانتنطق جهود الحركة في الأنسجة العصبية، العضلية والقلبية. بسبب خصائصها الكهروستاتيكية والكيميائية، ولأنّ أيونات البوتاسيوم +K أكبر من أيونات الصوديوم +Na، لذلك يمكن لقنوات ومضخّات الأيونات في أغشية الخلية التفريق بينهما، وضخّ إحداهما بنشاط أوالسماح بمرورها مع منع مرور الأخرى.
  • نشاط وإفراز الهرمونات.
  • المقاومة الوعائية.
  • التحكم النظامي في ضغط الدم.
  • حركية السبيل الهضمي.
  • استتباب حمض-قاعدة.
  • أيض الغلوكوز والأنسولين.
  • عمل الهرمونات القشرية المعدنية.
  • قدرة الهجريز الكلوي.
  • توازن الموائع والكهرل.

الاستتباب

يشير استتباب البوتاسيوم إلى الحفاظ على محتوى الجسم الكامل من البوتاسيوم بما في ذلك مستوى البوتاسيوم في البلازما، ونسبة تراكيز البوتاسيوم داخل الخلوية وخارج الخلوية في حدود ضيّقة، وذلك عند تناول الوجبات، والإفراز الخلوي الإجباري، والانتنطقات بين الأحياز داخل الخلوية وخارج الخلوية.

المعدّلات في البلازما

يجب حتى يبقى هجريز البوتاسيوم في البلازما عادةً بين 2.5 و5 ميلي مول (أوميلي مكافئ) لكل لتر وذلك عبر عدة آليات. قد يصاحب المستويات التي تزيد عن هذا النطاق زيادةً في معدّل الوفاة لأسباب متنوعة؛ وقد تتطور بعض أمراض القلب والكلى والرئتين بشكل أسرع إذا لم يُحافظ على مستويات البوتاسيوم في مصل الدم في النطاق العادي. توفّر وجبة متوسطة ذات محتوى 40-50 ميلي مول من البوتاسيوم للجسم قدراً يفوق القدر المتواجد منه في جميع البلازما (20-25 ميلي مول)، إلّا أنّ هذه الوجبة لا تزيد من هجريز البوتاسيوم في البلازما سوى بـ10% وذلك عبر الطرح الفوري والفعّال له بواسطة الآليات الكلوية.

نقص بوتاسيوم الدم هواعتلال في بوتاسيوم البلازما ويمكن حتىقد يكون قاتلاً إذا كان شديداً. تتفاوت الأسباب الشائعة لحدوثه بين فقدان البوتاسيوم عبر طرح السبيل الهضمي (تقيؤ، أوإسهال) أوعبر الطرح الكلوي (البوال). تضم أعراض الاعتلال وَهَنًا في العضلات، والتغلّف المعوي، واضطرابات في تخطيط كهربائية القلب، وانخفاض استجابة ردّة العمل؛ وفي الحالات الحادّة: شلل تنفسي، وقلاء واضطراب النظم القلبي.

آليات التحكّم

تتحكم أربع آليات أساسية بضبط مستوى البوتاسيوم في البلازما، لها أسماء وتصنيفات متعددة، وهي: 1) نظام تغذية راجعة سالبة تفاعلي، 2) نظام تغذية أمامية تفاعلي، 3) نظام تنبُّؤي أويوماوي، 4) نظام نقل غشائي خلوي أوداخلي. تسمّى الآليات الثلاث الأولى إجمالاً، في بعض الأحيان، "نظام استتباب البوتاسيوم الخارجي"، وتسمّى الآليتان الأولَيَتان "نظام استتباب البوتاسيوم التفاعلي".

  • نظام تغذية راجعة سالبة تفاعلي: يشير إلى النظام الذي يُحدِث طرحاً كلوياً للبوتاسيوم استجابةً لزيادة مستوياته في البلازما (تناول البوتاسيوم، أوانزياحه خارج الخلايا أوحقن وريدي).
نشاط مضخة الصوديوم والبوتاسيوم مثال على النقل النشط. يستخدم البروتينان الناقلان المدمجان في الغشاء الخلوي يسارا الـATP لنقل الصوديوم خارج الخلية عكس تدرّج الهجريز، أمّا البروتينان اللذان على اليمين فيستخدمان نقل نشط ثانوي لنقل البوتاسيوم لداخل الخلية. هذه العملية تؤدّي إلى إعادة بناء الـATP.
  • نظام تغذية أمامية تفاعلي: يشير إلى نظام غير مفهوم كلّياً يُحدِث طرحاً كلوياً للبوتاسيوم استجابةً لتناول البوتاسيوم وذلك قبل أي زيادة في مستوى البوتاسيوم بالبلازما. ربّما تبدأ هذه العملية بواسطة مستقبلات البوتاسيوم في الخلايا المعوية التي تكتشف البوتاسيوم الذي تمّ تناوله وتُحدث إشارات مبهمة واردة إلى الغدّة النخامية.
  • نظام تنبُّؤي أويوماوي: يزيد من الطرح الكلوي للبوتاسيوم أثناء ساعات تناول الوجبات (كمثال: النهار لدى البشر والليل لدى القوارض) بشكلٍ مستقلّ عن وجود أوكمّية أوانعدام تناول البوتاسيوم. ويتمّ بواسطة مذبذب يوماوي في النواة فوق التصالبة من الدماغ (الساعة المركزية)، وهذا يؤدّي إلى إفراز الكليتين (الساعة الملحقة) للبوتاسيوم بهذه النظم اليوماوي.
  • نظام نقل الأيونات: يُنقَل البوتاسيوم عبر الغشاء الخلوي باستخدام آليتين، إحداهما نشطة (أوفعّالة)، وتضخّ الصوديوم خارج الغشاء الخلوي والبوتاسيوم داخله. والثانية هامدة (غير نشطة) تسمح بخروج البوتاسيوم من الخلية. تؤثّر كاتيونات البوتاسيوم والصوديوم على توزيع السائل بين الأحياز الداخل والخارج خلوية عبر القوى الأسموزية. يحدث انتنطق البوتاسيوم والصوديوم عبر الغشاء الخلوي بواسطة مضخة الصوديوم والبوتاسيوم. تستخدم هذه المضخّة الأيونية الـATP لضخّ ثلاثة أيونات صوديوم خارج الخلية وأيونَي بوتاسيوم داخلها، مكونةً تدرّجاً كهروكيميائياً وقوة دافعة كهربائية عبر غشاء الخلية. تعدّ قنوات البوتاسيوم عالية الانتقائية (وهي رباعية القسيمات) حاسمةً لفرط الاستقطاب داخل العصبونات بعد تحفيز (بدء) جهد عملٍ ما على سبيل المثال. إنّ قناة البوتاسيوم KirBac3.1 المكتشفة حديثا هي خامس قناة بوتاسيوم (KvAP ،KirBac3.1 ،KirBac1.1 ،KcsA وMthK) تمّ تحديد بنيتها، وجميع قنوات البوتاسيوم هذه تعود لكائنات بدائية النوى.

التصفية الكلوية، إعادة الامتصاص والطرح

التعامل الكلوي مع البوتاسيوم ذوصلةٍ وثيقةٍ بالتعامل مع الصوديوم. فالبوتاسيوم هوكاتيون (أيون موجب) مهمّ داخل الخلايا الحيوانية [150 ميلي مول/ل (4.8 غ)]، في حين أنّ الصوديوم كاتيون مهمّ في السائل خارج الخلوي [150 ميلي مول/ل (3.345 غ)]. تتم تصفية حوالي 180 لتر من البلازما في الكليتين عبر الكبيبة وإلى النبيبات الكلوية كلّ يوم. ويتواجد في هذه التصفية حوالي 600غ من الصوديوم و33غ من البوتاسيوم. بما أنّ حوالي 1-10غ من الصوديوم و1-4غ من البوتاسيوم فقط يمكن لها حتى تُستبدَل بأيونات متحصّل عليها من الوجبات، فيجب حتى تعيد التصفية الكلوية امتصاص الباقي بكفاءة من البلازما.

منظر علوي لنموذج جزيئي لقناة البوتاسيوم. تعبر أيونة البوتاسيوم البنفسجية غبر القناة.

يعاد امتصاص الصوديوم للحفاظ على الحجم خارج الخلوي، والضغط الأسموزي، وهجريز الصوديوم في مصل الدم ضمن حدود ضيّقة؛ ويعاد امتصاص البوتاسيوم للحفاظ على هجريزه في مصل الدم في حدود ضيّقة كذلك. تعمل مضخّات الصوديوم في الأنيببات الكلوية على إعادة امتصاص الصوديوم. باللقاء، يحب الحفاظ على البوتاسيوم لأنّ كمّيته في بلازما الدم صغيرة جدّاً، ويقدّر مجموع كمّية البوتاسيوم في الخلايا بضعف كمّيتها في الدمّ بحوالي 30 مرّة تقريباً، وهذه الحالة ليست حرجة بالنسبة للبوتاسيوم، لأن انتنطق البوتاسيومقد يكون هامداً على عكس تدفّق الصوديوم استجابةً لتوازن دونان ظاهري (لكن ليس حقيقي)، فلا يمكن لهجريز البوتاسيوم في البول أبداً حتى ينخفض تحت هجريزه في مصل البلازما، باستثناء بعض الحالات التي يتم فيها طرح الماء بنشاط في نهاية العملية. يُطرح البوتاسيوم مرّتين ويعاد امتصاصه ثلاث مرّات قبل حتى يصل البول إلى الأنيببات الجامعة. في تلك الفترة، عادةً ماقد يكون للبول نفس هجريز البوتاسيوم في البلازما. في نهاية العملية يتم طرح البوتاسيوم مرة إضافية أخرى إذا كانت مستوياته في البلازما عالية جداً.

عند عدم تناول البوتاسيوم، يتمّ طرح حوالي 200 مغ يومياً -لمدّة أسبوع تقريباً- حتى ينخفض هجريز البوتاسيوم في البلازما إلى مستوى عوزٍ خفيف يقدّر بـ 3.0-3.5 ميلي مول/لتر. إذا استمرّ انعدام تناول البوتاسيوم، يستمرّ انخفاض هجريزه حتّى يصل درجة العوز الحادّ الذي يسبّب الوفاة في النهاية.

ينتقل البوتاسيوم بشكل هامد عبر المسامات في الغشاء الخلوي. حين تنتقل الأيونات عبر ناقلات الأيون (المضخّات) توجد بوابة في هذه المضخات على كلا جانبي الغشاء الخلوي، ولا يمكن حتى تنفتح سوى بوابة واحدة كلّ مرة. نتيجةً لذلك، ينتقل حوالي 100 أيون كلّ ثانية. للقنوات الأيونية بوابة واحدة، ولا يمكن سوى لنوع واحد من الأيونات التدفق عبرها بمعدّلعشرة مليون إلى 100 مليون أيون في الثانية. إنّ الكالسيوم مطلوب لفتح المسامات، رغم أنه يمكن حتى يعمل بشكل معاكس في إغلاق مسام واحد على الأقل. تحاكي مجموعات كربونيل الأحماض الأمينية داخل المسام حلمأة الماء التي تحدث في محلول الماء عبر طبيعة الشحنات الكهروستاتيكية الموجودة على أربع مجموعات كربونيل داخل المسام.

التغذية

التوصيات الغذائية

تحدّد الأكاديمية الوطنية للطب الخاصّة بالولايات المتحدة، بالنيابة عن كلّ من الولايات المتّحدة وكندا، متوسّط الاحتياجات المقدّرة (بالكمّية الغذائية المرجعية.

للذكور والإناث الأقل منتسعة سنين، تبلغ التناولات الكافية من البوتاسيوم مقدار: 400 مغ للرضع من عمر 0-6 أشهر؛ 680 مغ للرضع من عمر 7-12 شهر؛ 2000 مغ للأطفال من عمر 1-3 سنين؛ و2300 مغ للأطفال من عمر 4-8 سنين.

للذكور البالغينتسعة سنين فما فوق، تبلغ التناولات الكافية من البوتاسيوم مقدار: 2500 مغ للأطفال من عمر 9-13 سنة؛ 3000 مغ للمراهقين من عمر 14-18 سنة؛ و3400 للذين أعمارهم من 19 سنة أوأكبر.

للإناث البالغاتتسعة سنين فما فوق، تبلغ التناولات الكافية من البوتاسيوم مقدار: 2300 مغ للفتيات من عمر 9-18 سنة؛ 2600 مغ للنساء البالغات أعمارهن 19 سنة أوأكبر.

للنساء الحوامل والسقمعات، تبلغ التناولات الكافية من البوتاسيوم مقدار: 2600 مغ للنساء الحوامل من عمر 14-18 سنة؛ و2900 مغ للحوامل اللاتي أعمارهن 19 سنة أوأكبر؛ أمّا بالنسبة للسقمعات فـ2500 ملغ للسقمعات من عمر 14-18 سنة؛ و2800 مغ للسقمعات اللاتي أعمارهن 19 سنة أوأكبر. بالنسبة للسلامة، تحدّد الأكاديمية الوطنية للطبّ كذلك معدلات التناول الأقصى المقبولة (ULs) للفيتامينات والمعادن، إلا أنّه بالنسبة للبوتاسيوم لم تكن الدلائل كافية، لذلك لم يتمّ تحديد معدّل تناول أقصى له.

معظم الأمركيين لا يتناولون سوى نصف الكمية يومياً؛ ونفس الأمر في الاتحاد الأوروبي، وبشكل خاصّ في ألمانيا وإيطاليا، حيث عدم تناول الكفاية من البوتاسيوم أمر رائج نسبياً. توصي هيئة الخدمات الصحّية الوطنية الخاصّة بالمملكة المتحدة بتناول كمّيات مماثلة، وتقول أنّ البالغين يحتاجون 3500 مغ يومياً، وأنّ الكمّيات الفائضة قد تسبّب مشاكل صحية مثل آلام المعدة والإسهال.

المصادر الغذائية ونقص التناول

يتوفّر البوتاسيوم في جميع الفواكه والخضار واللحم والسمك. من الأطعمة التي تحتوي على تراكيز عالية من البوتاسيوم جميع من: اليام، البقدونس وكذلك المشمش المجفّف، والحليب والشوكولاتة، وجميع المكسرات (وبشكل خاص اللوز والفستق)، والبطاطس، وبتيلات الخيزران، والموز، والأفوكادو، وماء جوز الهند، وفول الصويا والنخالة. تدرج وزارة الزراعة الخاصّة بالولايات المتحدة الأطعمة التالية أيضاً: معجون الطماطم، وعصير البرتنطق، والشمندر الأحمر، والفاصوليا، والبطاطس، وموز الجنة، الموز، والمشمش وعدّة مصادر غذائية أخرى للبوتاسيوم، مرتّبةً تنازلياً تبعاً لمحتواها من الكالسيوم. إنّ المقدار اليومي الكافي من البوتاسيوم يمكن تحصيله منخمسة حبّات موز الجنة أو11 حبّة موز.

إنّ الحمية الغذائية التي فيها كمّية منخفضة من البوتاسيوم قد تسبّب ازدياد ضغط الدم ونقص بوتاسيوم الدم.

يوضّح الجدول التالي كمّيات البوتاسيوم في الأطعمة الغنية به بالميلي غرام لكل 100 غ:

المصدر الغذائي الكمّية
(ملغ/ 100غ)
فول الصويا (مجفّف) 1.800 ملغ
مشمش (مجفّف) 1.370 ملغ
نخالة 1.350 ملغ
فستق 1.020 ملغ
معجون الطماطم 1.014 ملغ
شمندر أحمر أوراق (مطهية) 909 ملغ
عدس 840 ملغ
زبيب 749 ملغ
لوز 705 ملغ
المصدر الغذائي الكمية
(ملغ / 100غ)
عصير برتنطق 674 ملغ
فول سوداني 658 ملغ
دقلة النور 656 ملغ
حليب الصويا 638 ملغ
كستناء حلو(محمّص) 592 ملغ
حنطة سوداء (الحبوب الكاملة) 577 ملغ
كاجو 565 ملغ
بطاطا مقلية (بالزيوت النباتية) 550 ملغ
بطاطس (مطهوة) 535 ملغ
المصدر الغذائي الكمية
(ملغ / 100غ)
فول الصويا (مطهو) 515 ملغ
أفوكادو 485 ملغ
زنباع (الأبيض) 484 ملغ
سبانخ (مطهو) 466 ملغ
موز الجنة (مطهو) 464 ملغ
فاصولياء 454 ملغ
طماطم 439 ملغ
فاصولياء (مطهوة) 402 ملغ

مكمّلات غذائية

عادةً ما تُستخدم مكمّلات البوتاسيوم مقترنةً مع مدرّات البول التي تمنع إعادة امتصاص الصوديوم والماء عكس اتجاهه من الأنيبيب البعيد (مثل الثيازيد ومدرات البول العروية)، لأن ذلك يعزّز زيادة طرح الأنيبيب البعيد للبوتاسيوم، والذي تكون نتيجته زيادةٌ في طرح البوتاسيوم. تتوفّر مجموعة متنوّعة من مكمّلات البوتاسيوم، منها التي تستلزم وصفات طبية ومنها التي لا تستلزم ذلك. يمكن حتى يُذاب كلوريد البوتاسيوم في الماء، لكنّ المذاق المالح/ المرّ يجعل المكمّلات السائلة غير مستساغة. يتراوح مجال الجرعات الاعتيادي بينعشرة ميلي مول (400 ملغ) إلى 20 ميلي مول (800 ملغ). البوتاسيوم متوفّر كذلك على شكل أقراص أوكبسولات والتي أُنشِئت كي تسمح للبوتاسيوم حتى يترشّح ببطء خارج المطرس، لأن التراكيز العالية من أيونات البوتاسيوم التي تظهر مجاورة لقرص صلب يمكن حتى تضرّ وتجرح الغشاء المخاطي للمعدة أوالأمعاء.

لأن الكليتين هما مسقط طرح البوتاسيوم، فالأفراد الذين يعانون من اختلال وظائف الكلى عرضة لخطر الإصابة بفرط بوتاسيوم الدم إذا لم يتم تنظيم وتحديد تناول البوتاسيوم عبر الوجبات والمكمّلات. خَلُصَ تحليل تلوي إلى أنّه يصاحب الزيادةً في تناول البوتاسيوم اليومي بقدر 1640 ملغ انخفاض بنسبة 21% في خطر التعرض لسكتة. لذلك فإنّه يمكن حتىقد يكون كلوريد البوتاسيوم وبيكربونات البوتاسيوم مفيدين للتحكّم في ازدياد ضغط الدم الخفيف. في سنة 2016، اتى البوتاسيوم في المرتبة 33 في قائمة الأدوية الموصوفة في الولايات المتحدة بحوالي 22 مليون وصفة.

التعهد عليه بواسطة براعم التذوق

يمكن التعرّف على البوتاسيوم بالتذوّق لأنه يُحدِث ثلاثةً من خمسة أنواع من أحاسيس التذوق، وذلك حسب الهجريز. لمحاليل أيونات البوتاسيوم المخففة مذاق حلو، وهذا يسمح بوضع تراكيز متوسطة منه في الحليب والعصائر؛ أمّا التراكيز العالية فتتزايد مرارتها/قلويتها بتزايد الهجريز، وتصبح في النهاية مالحة المذاق. تجعل توليفة المرارة والملوحة التي تمتاز بها محاليل البوتاسيوم عالية الهجريز مكملاته السائلة ذات مذاق غير مستساغ.

الاستخدامات التجارية

التسميد

سماد كبريتات البوتاسيوم/كبريتات المغنيزيوم.

أيونات البوتاسيوم مكوّنٌ أساسيٌّ في غذاء النبات، وتوجد في معظم أنواع التربة. وتُستخدم سماداً في الزراعة، والبستنة، والزراعة في الماء على شكل كلوريد (KCl)، كبريتات (K2SO4)، نترات (KNO3)، وهي تمثل حصة البوتاسيوم "K" في المحتوى "NPK" (نسبةً إلى عناصر النيتروجين والفوسفور والبوتاسيوم)، الذي يعرض على ملصقات السماد. تستهلك الأسمدة الزراعية 95% من الإنتاج الكيميائي العالمي للبوتاسيوم، وحوالي 90% من هذا البوتاسيوم يُوفَّر على شكل كلوريد البوتاسيوم. يتراوح محتوى البوتاسيوم في النبات بين 0.5% إلى 2% من وزن المحاصيل المحصودة ومتعارف على الرمز له بكمية K2O. تعتمد الزراعة الحديثة وفيرة الغلة على الأسمدة لاستبدال البوتاسيوم الضائع في الحصاد. معظم الأسمدة الزراعية تحتوي على كلوريد البوتاسيوم، في حين أنّ كبريتات البوتاسيوم تُستخدم لتسميد المحاصيل الحساسة للكلوريد أوالمحاصيل التي بحاجة إلى كمّية كبيرة من الكبريتات. تُنتج الكبريتات في معظم الحالات بتفكيك المعدنيين كاينيت (MgSO4·KCl·3H2O) ولانجباينيت (MgSO4·K2SO4). هناك أسمدة معدودة فقط تحتوي على نترات البوتاسيوم. كان حوالي 93% من الإنتاج العالمي للبوتاسيوم في 2005 قد استُهلك في صناعة الأسمدة. فضلاً عن ذلك، يمكن للبوتاسيوم حتى يلعب دورا مفتاحيا في دورة المغذيات عبر التحكّم في المخلّفات النباتية.

الاستخدام الطبي

يستخدم البوتاسيوم على شكل كلوريد البوتاسيوم دواءاً لعلاج ومنع نقص بوتاسيوم الدم، الذي يمكن حتى يحدث نتيجة التقيؤ أوالإسهال أوبعض الأدوية المعينة. يُعطى البوتاسيوم عبر حقن بطيء داخل الوريد أوعبر الفم.

مضافات غذائية

طرطرات الصوديوم والبوتاسيوم (KNaC4H4O6 هي المكوّن الرئيسي لذرور الخبز، وتُستخدم كذلك في تفضيض المرايا. برومات البوتاسيوم (KBrO3) مؤكسد قوي (E924)، ويُستخدم لتحسين قوة عجينة الخبز وطول الأرز. يُستخدم بيكبريتيت البوتاسيوم (KHSO3) حافظاً للأطعمة، وعلى سبيل المثال في صناعة النبيذ والجعة (لكن ليس في اللحوم)، ويُستخدم كذلك في تبييض المنسوجات، وفي دباغة الجلود.

الصناعة

أشهر مركّبات البوتاسيوم الكيميائية هي: هيدروكسيد البوتاسيوم، كربونات البوتاسيوم، كبريتات البوتاسيوم وكلوريد البوتاسيوم، وتُنتَج ملايين الأطنان من هذه المركّبات سنوياً.

هيدروكسيد البوتاسيوم (KOH) قاعدة قوية تُستخدم في الصناعة لتعديل الأحماض القوية والضعيفة، وللتحكّم في pH الوسط وتصنيع أملاح البوتاسيوم. تُستخدم كذلك في تصبين الدهون والزيوت، المنظفات الصناعية، وفي تفاعلات الحلمأة كتلك الخاصّة بالأسترات. يُتحصَّل على نترات البوتاسيوم (KNO3) أوملح البارود من مصادرٍ طبيعيةٍ مثل ذرق الطائر والمتبخرات؛ أومن مصادر صناعيةٍ عبر عملية هابر-بوش، وهوالمؤكسد في البارود الأسود وسمادٌ زراعيٌ مهمّ. يُستخدم سيانيد البوتاسيوم (KCN) في إذابة النحاس والمعادن الثمينة وبشكل خاص الفضة والمضى عبر تشكيل معقّدات؛ وتطبيقاته تضم استخدامه في تعدين المضى، الطلي الكهربائي والتشكيل بالترسيب الكهربائي لهذه المعادن؛ كما يُستخدم في الاصطناع العضوي لتكوين النتريل. يُستخدم كربونات البوتاسيوم (K2CO3) في صناعة الزجاج والصابون وأنابيب التلفاز الملونة والمصابيح الفلورية وفي أصبغة الأنسجة والمساحيق الملونة.بيرمنغنات البوتاسيوم (KMnO4) هي مادّة مؤكسدة، مبيِّضة، منقّية وتُستخدم لإنتاج السكارين. يُضاف كلورات البوتاسيوم (KClO3) إلى أعواد الكبريت والمتفجرات. بروميد البوتاسيوم (KBr) وكان يُستخدم سابقاً في التخدير وفي التصوير الفوتوغرافي.

كرومات البوتاسيوم (K2CrO4) ويُستخدم في الحبر، والأصبغة، واللطخات (لون أحمر ناصع مصفر نوعا ما)، في المتفجرات والألعاب النارية، وفي دباغة الجلود، وفي ورق الذباب وأعواد ثقاب الأمان، لكن جميع هذه الاستخدامات هي بفضل كيميائية أيون الكرومات بدل أيون البوتاسيوم.

استخدامات خاصة

توجد الآلاف من الاستخدامات لمختلف مركّبات البوتاسيوم. أحد الأمثلة هوفوق أكسيد البوتاسيوم KO2، وهي مادّة برتنطقية صلبة تعمل مصدراً محمولاً للأكسجين وممتص لثنائي أكسيد الكربون. يُستخدم بشكل واسع في أنظمة التهوية في المناجم والغواصات والمركبات الفضائية لأنّه يشغل حجماً أقلّ من الأكسجين الغازي.

مثالٌ آخر هوكوبالتي نتريت البوتاسيوم K3[Co(NO2)6] والذي يُستخدم خضاباً تحت اسم أوريولين أوأصفر الكوبالت.

يمكن لنظائر البوتاسيوم المستقرّة حتى تبرّد بالليزر كي تستخدم لسبر مشاكل أساسية وتكنولوجية في ميكانيكا الكم؛ إذ يملك النظيران البوزونيان رنين فشباخ مناسبٍ للقيام بدراسات تتطلّب تآثرات قابلة للتوليف، في حين حتى النظير 40K هوأحد فرموينين اثنين فقط مستقرّين من بين الفلزّات القلوية.

استخدامات مخبرية

سبيكة الصوديوم والبوتاسيوم (NaK) هي مائع يُستخدم وسطاً ناقلاً للحرارة ومجفّفاً لإنتاج مذيبات جافة خالية من الهواء. يمكن حتى يُستخدم كذلك في التقطير التفاعلي. السبيكة الثلاثية 12% صوديوم، 47% بوتاسيوم و41% سيزيوم لها أخفض نقطة انصهار من أي سبيكة آخرى وهي -78 درجة مئوية.

يُستخدم البوتاسيوم الفلزّي في الكثير من أنواع مقاييس المغناطيسية.

احتياطات الأمان

يتفاعل فلز البوتاسيوم بشدّة مع الماء منتجاً هيدروكسيد البوتاسيوم (KOH) وغاز الهيدروجين.

ملف:Potassium water 20.theora.ogv
يعطي تفاعل فلزّ البوتاسيوم مع الماء غاز الهيدروجين مع بخار البوتاسيوم، وحريق ذولهب وردي أوليلكي. كما يتشكّل هيدروكسيد البوتاسيوم شديد القلوية في المحلول.

هذا التفاعل ناشرٌ للحرارة ويُطلق حرارة كافية لإشعال الهيدروجين الناتج عند تواجد الأكسجين. يميل البوتاسيوم إلى الانفجار عند التلامس مع الماء ومن دون وجود الأكسجين، ويسمّى ذلك الانفجار بانفجار كولوم والذي يمكن حتى يرش المشاهدين بهيدروكسيد البوتاسيوم، وهوقلوي قويّ يدمّر الأنسجة الحيّة ويسبّب حروقاً جلدية. يلتهب البوتاسيوم المبشور بلطف في درجة حرارة الغرفة. يطفوالكالسيوم المحترق على الماء بسبب كثافته المنخفضة (0.89 غ/سم3)، ممّا يُعرّضه لأكسجين الجو. ينبغي استخدام عوامل إخماد الحرائق خاصة لإطقاء حرائق البوتاسيوم، لأن الكثير منها، بما في ذلك الماء، غير فعّالة أوتزيد الأمر سوءاً. يستخدم لذلك الغرض جميع من النيتروجين، والأرغون، أوالمساحيق الصلبة مثل كلوريد الصوديوم (ملح المائدة)، أوكربونات الصوديوم (رماد الصودا) أوثنائي أكسيد السيليكون (الرمل)، وهي فعّالة إذا كانت جافّة. بعض مساحيق الإطفاء الجافّة من الصنف D المصمّمة لحرائق الفلزّات فعّالة كذلك، حيث تحرِم هذه العوامل الحريق من الأكسجين وتقوم بتبريد فلزّ البوتاسيوم.

يتفاعل البوتاسيوم بشدّة مع الهالوجينات وينفجر عند تواجد البروم، ويتفاعل بالانفجار كذلك مع حمض الكبريتيك. أثناء الاحتراق، يشكّل البوتاسيوم البيروكسيدات وفوق الأكسيدات. يمكن حتى تتفاعل هذه البيروكسيدات بشدّة مع المركّبات العضوية مثل الزيوت. يمكن حتى تتفاعل كلّ من البيروكسيدات وفوق الأكاسيد انفجاريا مع البوتاسيوم الفلزّي.

عادةً ما يُخزَّن البوتاسيوم تحت زيت معدني لامائي أوالكيروسين، لأنّه يتفاعل مع بخار الماء في الجو. على العكس من الليثيوم والصوديوم، فلا يجب حتى يُخزّن البوتاسيوم تحت الزيت لمدّة تفوق ستّة أشهر، إلّا إذا كان في جوٍّ خالٍ من الأكسجين أوفي فراغ. إذ يمكن بعد التخزين المطوّل وبتماسٍ مع أكسجين الهواء في الجوّ حتى تتشكّل البيروكسيدات الخطيرة الحساسة للصدمات على الفلز وتحت غطاء الحاوية، ويمكنها الانفجار عند فتحها.

بسبب النشاط الكيميائي الكبير لفلزّ البوتاسيوم فيجب حتى يتم التعامل معه بحذرٍ شديد، مع حمايةٍ كاملةٍ للجلد والعينين، ومن الأفضل تواجد حاجز مقاوم للانفجار بين المستخدم والفلزّ. إذا ابتلاع كمّيات كبيرة من مركّبات البوتاسيوم يمكن حتى يؤدّي إلى الإصابة بفرط بوتاسيوم الدم، الذي يؤثّر بشدّة على نظام جهاز الدوران. يستُخدم كلوريد البوتاسيوم في الولايات المتحدة في الإعدامات بالحقن القاتلة.

انظر أيضاً

  • فلزات قلوية

المراجع

  1. ^ Augustyn, Adam. "Potassium/ Chemical element". Encyclopedia Britannica. مؤرشف من الأصل فيتسعة يوليو2019. اطلع عليه بتاريخ 17 أبريل 2019. Potassium Physical properties
  2. Webb, D. A. (April 1939). "The Sodium and Potassium Content of Sea Water" (PDF). The Journal of Experimental Biology (2): 183. مؤرشف من الأصل (PDF) في 24 سبتمبر 2019.
  3. ^ Anthoni, J. (2006). "Detailed composition of seawater at 3.5% salinity". seafriends.org.nz. مؤرشف من الأصل في 18 يناير 2019. اطلع عليه بتاريخ 23 سبتمبر 2011.
  4. ^ Hall, John E.; Guyton, Arthur C. (2006). Textbook of medical physiology. St. Louis, Mo: Elsevier Saunders. ISBN . صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  5. Greenwood, p. 73
  6. ^ Marggraf, Andreas Siegmund (1761). . صفحة 167. مؤرشف من الأصل في 24 يناير 2020.
  7. ^ du Monceau, H. L. D. (1702–1797). "Sur la Base de Sel Marin". Memoires de l'Academie Royale des Sciences (باللغة الفرنسية): 65–68. مؤرشف من الأصل في 21 أغسطس 2019.
  8. Weeks, Mary Elvira (1932). "The discovery of the elements. IX. Three alkali metals: Potassium, sodium, and lithium". Journal of Chemical Education. 9 (6): 1035. Bibcode:1932JChEd...9.1035W. doi:10.1021/ed009p1035.
  9. Siegfried, R. (1963). "The Discovery of Potassium and Sodium, and the Problem of the Chemical Elements". Isis. 54 (2): 247–258. doi:10.1086/349704. JSTOR 228541.
  10. ^ Browne, C. A. (1926). "Historical notes upon the domestic potash industry in early colonial and later times". Journal of Chemical Education. 3 (7): 749–756. Bibcode:1926JChEd...3..749B. doi:10.1021/ed003p749.
  11. ^ Enghag, P. (2004). "11. Sodium and Potassium". Encyclopedia of the elements. Wiley-VCH Weinheim. ISBN .
  12. ^ Davy, Humphry (1808). "On some new phenomena of chemical changes produced by electricity, in particular the decomposition of the fixed alkalies, and the exhibition of the new substances that constitute their bases; and on the general nature of alkaline bodies". Philosophical Transactions of the Royal Society. 98: 1–44. doi:10.1098/rstl.1808.0001. مؤرشف من الأصل في 08 مارس 2020.
  13. ^ Shaposhnik, V. A. (2007). "History of the discovery of potassium and sodium (on the 200th anniversary of the discovery of potassium and sodium)". Journal of Analytical Chemistry. 62 (11): 1100–2. doi:10.1134/S1061934807110160.
  14. ^ Davy, Humphry (1808). "On some new phenomena of chemical changes produced by electricity, in particular the decomposition of the fixed alkalies, and the exhibition of the new substances that constitute their bases; and on the general nature of alkaline bodies". Philosophical Transactions of the Royal Society. 98: 32. doi:10.1098/rstl.1808.0001. مؤرشف من الأصل في 08 مارس 2020.
  15. ^ Klaproth, M. (1797) "Nouvelles données relatives à l'histoire naturelle de l'alcali végétal" (New data regarding the natural history of the vegetable alkali), Mémoires de l'Académie royale des sciences et belles-lettres (Berlin), pp. 9–13 ; see p. 13. نسخة محفوظة 24 يناير 2020 على مسقط واي باك مشين.
  16. ^ Davy, Humphry (1809). "Ueber einige neue Erscheinungen chemischer Veränderungen, welche durch die Electricität bewirkt werden; insbesondere über die Zersetzung der feuerbeständigen Alkalien, die Darstellung der neuen Körper, welche ihre Basen ausmachen, und die Natur der Alkalien überhaupt" [On some new phenomena of chemical changes that are achieved by electricity; particularly the decomposition of flame-resistant alkalis [i.e., alkalies that cannot be reduced to their base metals by flames], the preparation of new substances that constitute their [metallic] bases, and the nature of alkalies generally]. Annalen der Physik. 31 (2): 113–175. Bibcode:1809AnP....31..113D. doi:10.1002/andp.18090310202. مؤرشف من الأصل في ثلاثة سبتمبر 2019.
  17. ^ Berzelius, J. Jacob (1814) Försök, att, genom användandet af den electrokemiska theorien och de kemiska proportionerna, grundlägga ett rent vettenskapligt system för mineralogien [Attempt, by the use of electrochemical theory and chemical proportions, to found a pure scientific system for mineralogy]. Stockholm, Sweden: A. Gadelius., p. 87. نسخة محفوظةتسعة يناير 2020 على مسقط واي باك مشين.
  18. ^ 19. Kalium (Potassium) – Elementymology & Elements Multidict. vanderkrogt.net نسخة محفوظة 18 فبراير 2019 على مسقط واي باك مشين.
  19. ^ Liebig, Justus von (1840). (باللغة الألمانية). مؤرشف من الأصل في 08 مارس 2020.
  20. ^ Cordel, Oskar (1868). (باللغة الألمانية). L. Schnock. مؤرشف من الأصل فيتسعة يناير 2020.
  21. ^ Birnbaum, Karl (1869). (باللغة الألمانية). مؤرشف من الأصل في 08 مارس 2020.
  22. ^ United Nations Industrial Development Organization and Int'l Fertilizer Development Center (1998). . صفحات 46, 417. ISBN . مؤرشف من الأصل في 18 يناير 2020.
  23. ^ Shimansky, V.; Bikmaev, I. F.; Galeev, A. I.; Shimanskaya, N. N.; et al. (September 2003). "Observational constraints on potassium synthesis during the formation of stars of the Galactic disk". Astronomy Reports. 47 (9): 750–762. Bibcode:2003ARep...47..750S. doi:10.1134/1.1611216.
  24. ^ The, L.-S.; Eid, M. F. El; Meyer, B. S. (2000). "A New Study of s-Process Nucleosynthesis in Massive Stars". The Astrophysical Journal. 533 (2): 998. arXiv:astro-ph/9812238. Bibcode:2000ApJ...533..998T. doi:10.1086/308677. ISSN 0004-637X.
  25. ^ Greenwood, p. 69
  26. Micale, Giorgio; Cipollina, Andrea; Rizzuti, Lucio (2009). . Springer. صفحة 3. ISBN . مؤرشف من الأصل في 24 يناير 2020.
  27. Prud'homme, Michel; Krukowski, Stanley T. (2006). "Potash". Industrial minerals & rocks: commodities, markets, and uses. Society for Mining, Metallurgy, and Exploration. صفحات 723–740. ISBN .
  28. Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Potassium". Lehrbuch der Anorganischen Chemie (باللغة الألمانية) (الطبعة 91–100). Walter de Gruyter. ISBN .
  29. ^ Ross, William H. (1914). "The Origin of Nitrate Deposits". Popular Science. Bonnier Corporation. صفحات 134–145.
  30. ^ Garrett, Donald E. (1995-12-31). . Springer. ISBN . مؤرشف من الأصل فيسبعة ديسمبر 2016.
  31. Ober, Joyce A. "Mineral Commodity Summaries 2008:Potash" (PDF). United States Geological Survey. مؤرشف من الأصل (PDF) في 11 يناير 2019. اطلع عليه بتاريخ 20 نوفمبر 2008.
  32. Ober, Joyce A. "Mineral Yearbook 2006:Potash" (PDF). United States Geological Survey. مؤرشف من الأصل (PDF) في 11 يناير 2019. اطلع عليه بتاريخ 20 نوفمبر 2008.
  33. ^ Wishart, David J. (2004). . U of Nebraska Press. صفحة 433. ISBN . مؤرشف من الأصل في 22 مارس 2019.
  34. ^ Chiu, Kuen-Wai (2000). "Potassium". Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. doi:10.1002/0471238961.1615200103080921.a01.pub2. ISBN .
  35. ^ Burkhardt, p. 34
  36. ^ Delahunt, J.; Lindeman, T. (2007). "Review of the safety of potassium and potassium oxides, including deactivation by introduction into water". Journal of Chemical Health and Safety. 14 (2): 21–32. doi:10.1016/j.jchas.2006.09.010.
  37. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001 CS1 maint: ref=harv (link)
  38. ^ Bowen, Robert; Attendorn, H. G. (1988). "Theory and Assumptions in Potassium–Argon Dating". Isotopes in the Earth Sciences. Springer. صفحات 203–8. ISBN .
  39. ^ Anaç, D. & Martin-Prével, P. (1999). . Springer. صفحات 290–. ISBN . مؤرشف من الأصل فيثمانية يناير 2020.
  40. ^ "Radiation and Radioactive Decay. Radioactive Human Body". Harvard Natural Sciences Lecture Demonstrations. مؤرشف من الأصل فيتسعة أغسطس 2019. اطلع عليه بتاريخ July 2, 2016.
  41. ^ Winteringham, F. P. W; Effects, F.A.O. Standing Committee on Radiation, Land And Water Development Division, Food and Agriculture Organization of the United Nations (1989). . Food & Agriculture Org. صفحة 32. ISBN . مؤرشف من الأصل فيعشرة يناير 2020. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  42. Greenwood, p. 76
  43. ^ Greenwood, p. 75
  44. ^ Andreas Hermann. "Elements can be solid and liquid at same time". University of Edinburgh. مؤرشف من الأصل فيسبعة مايو2019. اطلع عليه بتاريخ August 2019.
  45. Dye, J. L. (1979). "Compounds of Alkali Metal Anions". Angewandte Chemie International Edition. 18 (8): 587–598. doi:10.1002/anie.197905871.
  46. James, A. M.; Lord, M. P. (1992). Macmillan's chemical and physical data. London: Macmillan. ISBN .
  47. ^ Burkhardt, p. 35
  48. Burkhardt, p. 32
  49. ^ Rieke, R. D. (1989). "Preparation of Organometallic Compounds from Highly Reactive Metal Powders". Science. 246 (4935): 1260–4. Bibcode:1989Sci...246.1260R. doi:10.1126/science.246.4935.1260. PMID 17832221.
  50. ^ Lide, David R. (1998). Handbook of Chemistry and Physics (الطبعة 87th). Boca Raton, Florida, United States: CRC Press. صفحات 477, 520. ISBN .
  51. ^ Lide, D. R., المحرر (2005), CRC Handbook of Chemistry and Physics (الطبعة 86th), Boca Raton (FL): CRC Press, صفحة 4–80, ISBN  CS1 maint: ref=harv (link)
  52. ^ Schultz, p. 94
  53. ^ Lincoln, S. F.; Richens, D. T. and Sykes, A. G. "Metal Aqua Ions" in J. A. McCleverty and T. J. Meyer (eds.) , Vol. 1, pp. 515–555, (ردمك 978-0-08-043748-4). نسخة محفوظة 19 أبريل 2019 على مسقط واي باك مشين.
  54. ^ Abdel-Wahab, M.; Youssef, S.; Aly, A.; el-Fiki, S.; et al. (1992). "A simple calibration of a whole-body counter for the measurement of total body potassium in humans". International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes. 43 (10): 1285–9. doi:10.1016/0883-2889(92)90208-V. PMID 1330980.
  55. ^ Chang, Raymond (2007). . McGraw-Hill Higher Education. صفحة 52. ISBN . مؤرشف من الأصل في 15 يناير 2020.
  56. ^ Vašák, Milan; Schnabl, Joachim (2016). "Chapter 8. Sodium and Potassium Ions in Proteins and Enzyme Catalysis". In Astrid, Sigel; Helmut, Sigel; Roland K.O., Sigel (المحررون). The Alkali Metal Ions: Their Role in Life. 16. Springer. صفحات 259–290. doi:10.1007/978-4-319-21756-7_8 (غير نشط 2019-06-20).
  57. ^ Weiner ID, Linus S, Wingo CS (2014). "Disorders of potassium metabolism". In Freehally J, Johnson RJ, Floege J (المحررون). Comprehensive clinical nephrology (الطبعة 5th). St. Louis: Saunders. صفحة 118. ISBN .
  58. ^ Malnic G, Giebisch G, Muto S, Wang W, Bailey MA, Satlin LM (2013). "Regulation of K+ excretion". In Alpern RJ, Caplan MJ, Moe OW (المحررون). Seldin and Giebisch's the kidney: physiology and pathophysiology (الطبعة 5th). London: Academic Press. صفحات 1659–1716. ISBN .
  59. ^ Mount DB, Zandi-Nejad K (2011). "Disorders of potassium balance". In Taal MW, Chertow GM, Marsden PA, Skorecki KL, Yu AS, Brenner BM (المحررون). The kidney (الطبعة 9th). Philadelphia: Elsevier. صفحات 640–688. ISBN .
  60. ^ Lockless, S. W.; Zhou, M.; MacKinnon, R. (2007). "Structural and thermodynamic properties of selective ion binding in a K+ channel". PLoS Biol. 5 (5): e121. doi:10.1371/journal.pbio.0050121. PMC 1858713. PMID 17472437.
  61. ^ Goyal, Abhinav; Spertus, John A.; Gosch, Kensey; Venkitachalam, Lakshmi; Jones, Philip G.; Van den Berghe, Greet; Kosiborod, Mikhail (2012). "Serum Potassium Levels and Mortality in Acute Myocardial Infarction". JAMA. 307 (2): 157–164. doi:10.1001/jama.2011.1967. PMID 22235086.
  62. ^ Moore-Ede, M. C. (1986). "Physiology of the circadian timing system: predictive versus reactive homeostasis". Am J Physiol. 250: R737–R752.
  63. ^ Slonim, Anthony D.; Pollack, Murray M. (2006). "Potassium". Pediatric critical care medicine. Lippincott Williams & Wilkins. صفحة 812. ISBN .
  64. ^ Visveswaran, Kasi (2009). "hypokalemia". Essentials of Nephrology (الطبعة 2nd). BI Publications. صفحة 257. ISBN .
  65. ^ Gumz, Michelle L.; Rabinowitz, Lawrence; Wingo, Charles S. (2015-07-02). "An Integrated View of Potassium Homeostasis". The New England Journal of Medicine. 373 (1): 60–72. doi:10.1056/NEJMra1313341. ISSN 0028-4793. PMC 5675534. PMID 26132942.
  66. ^ Campbell, Neil (1987). Biology. Menlo Park, California: Benjamin/Cummings Pub. Co. صفحة 795. ISBN .
  67. ^ Hellgren, Mikko; Sandberg, Lars; Edholm, Olle (2006). "A comparison between two prokaryotic potassium channels (KirBac1.1 and KcsA) in a molecular dynamics (MD) simulation study". Biophysical Chemistry. 120 (1): 1–9. doi:10.1016/j.bpc.2005.10.002. PMID 16253415.
  68. ^ Potts, W. T. W.; Parry, G. (1964). Osmotic and ionic regulation in animals. Pergamon Press.
  69. ^ Lans, H. S.; Stein, I. F.; Meyer, K. A. (1952). "The relation of serum potassium to erythrocyte potassium in normal subjects and patients with potassium deficiency". American Journal of the Medical Sciences. 223 (1): 65–74. doi:10.1097/00000441-195201000-00011. PMID 14902792.
  70. ^ Bennett, C. M.; Brenner, B. M.; Berliner, R. W. (1968). "Micropuncture study of nephron function in the rhesus monkey". Journal of Clinical Investigation. 47 (1): 203–216. doi:10.1172/JCI105710. PMC 297160. PMID 16695942.
  71. ^ Solomon, A. K. (1962). "Pumps in the living cell". Scientific American. 207 (2): 100–8. Bibcode:1962SciAm.207b.100S. doi:10.1038/scientificamerican0862-100. PMID 13914986.
  72. ^ Kernan, Roderick P. (1980). Cell potassium (Transport in the life sciences). New York: جون وايلي وأولاده . صفحات 40, 48. ISBN .
  73. Wright, F. S. (1977). "Sites and mechanisms of potassium transport along the renal tubule". Kidney International. 11 (6): 415–432. doi:10.1038/ki.1977.60. PMID 875263.
  74. ^ Palmer BF (2015). "Regulation of Potassium Homeostasis". Clin J Am Soc Nephrol. 10 (6): 1050–60. doi:10.2215/CJN.08580813. PMC 4455213. PMID 24721891.
  75. ^ Squires, R. D.; Huth, E. J. (1959). "Experimental potassium depletion in normal human subjects. I. Relation of ionic intakes to the renal conservation of potassium". Journal of Clinical Investigation. 38 (7): 1134–48. doi:10.1172/JCI103890. PMC 293261. PMID 13664789.
  76. ^ Fiebach, Nicholas H.; Barker, Lee Randol; Burton, John Russell & Zieve, Philip D. (2007). . Lippincott Williams & Wilkins. صفحات 748–750. ISBN . مؤرشف من الأصل في 24 يناير 2020.
  77. ^ Gadsby, D. C. (2004). "Ion transport: spot the difference". Nature. 427 (6977): 795–7. Bibcode:2004Natur.427..795G. doi:10.1038/427795a. PMID 14985745. ; for a diagram of the potassium pores are viewed, see Miller, C (2001). "See potassium run". Nature. 414 (6859): 23–24. Bibcode:2001Natur.414...23M. doi:10.1038/35102126. PMID 11689922.
  78. ^ Jiang, Y.; Lee, A.; Chen, J.; Cadene, M.; et al. (2002). "Crystal structure and mechanism of a calcium-gated potassium channel" (PDF). Nature. 417 (6888): 515–22. Bibcode:2002Natur.417..515J. doi:10.1038/417515a. PMID 12037559. مؤرشف من الأصل (PDF) في 24 أبريل 2009.
  79. ^ Shi, N.; Ye, S.; Alam, A.; Chen, L.; et al. (2006). "Atomic structure of a Na+- and K+-conducting channel". Nature. 440 (7083): 570–4. Bibcode:2006Natur.440..570S. doi:10.1038/nature04508. PMID 16467789. ; includes a detailed picture of atoms in the pump.
  80. ^ Zhou, Y.; Morais-Cabral, J. H.; Kaufman, A.; MacKinnon, R. (2001). "Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution". Nature. 414 (6859): 43–48. Bibcode:2001Natur.414...43Z. doi:10.1038/35102009. PMID 11689936.
  81. ^ Noskov, S. Y.; Bernèche, S.; Roux, B. (2004). "Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands". Nature. 431 (7010): 830–4. Bibcode:2004Natur.431..830N. doi:10.1038/nature02943. PMID 15483608.
  82. ^ National Academies of Sciences, Engineering and Medicine (2019). "Potassium: Dietary Reference Intakes for Adequacy". Dietary Reference Intakes for Sodium and Potassium. Washington, DC: The National Academies Press. doi:10.17226/25353. ISBN . PMID 30844154.
  83. ^ "Dietary Reference Intakes for Sodium and Potassium – Publication". Health and Medicine Division. National Academies of Sciences, Engineering and Medicine. March 5, 2019. مؤرشف من الأصل فيتسعة مايو2019. اطلع عليه بتاريخ 13 مايو2019.
  84. ^ Panel on Dietary Reference Intakes for Electrolytes and Water, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition (2004). . Washington, D.C.: National Academies Press. ISBN . مؤرشف من الأصل في 06 أكتوبر 2011. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  85. ^ Karger, S. (2004). "Energy and nutrient intake in the European Union". Annals of Nutrition and Metabolism. 48 (2 (suppl)): 1–16. doi:10.1159/000083041.
  86. ^ "Potassium" in NHS Choices – Other vitamins and minerals نسخة محفوظة ثلاثة أبريل 2019 على مسقط واي باك مشين.
  87. ^ "Potassium Food Charts". Asia Pacific Journal of Clinical Nutrition. مؤرشف من الأصل في 13 فبراير 2019. اطلع عليه بتاريخ 18 مايو2011.
  88. ^ "Potassium Content of Selected Foods per Common Measure, sorted by nutrient content" (PDF). USDA National Nutrient Database for Standard Reference, Release 20. مؤرشف من الأصل (PDF) في 17 ديسمبر 2008.
  89. ^ Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, Klag MJ (1997). "Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials". JAMA. 277 (20): 1624–32. doi:10.1001/jama.1997.03540440058033. PMID 9168293.
  90. ^ . Website des Deutschen Ernährungsberatungs- und Informationsnetzes. Abgerufen am 21. Oktober 2012. نسخة محفوظة 27 يونيو2017 على مسقط واي باك مشين.
  91. Institute of Medicine (U.S.). Committee on Optimization of Nutrient Composition of Military Rations for Short-Term, High-Stress Situations; Institute of Medicine (U.S.). Committee on Military Nutrition Research (2006). . National Academies Press. صفحات 287–. ISBN . مؤرشف من الأصل في 24 يناير 2020.
  92. ^ D'Elia, L.; Barba, G.; Cappuccio, F.; Strazzullo (2011). "Potassium Intake, Stroke, and Cardiovascular Disease: A Meta-Analysis of Prospective Studies". J Am Coll Cardiol. 57 (10): 1210–9. doi:10.1016/j.jacc.2010.09.070. PMID 21371638.
  93. ^ He FJ, Marciniak M, Carney C, Markandu ND, Anand V, Fraser WD, Dalton RN, Kaski JC, MacGregor GA (2010). "Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives". Hypertension. 55 (3): 681–8. doi:10.1161/HYPERTENSIONAHA.109.147488. PMID 20083724.
  94. ^ "The Top 300 of 2019". clincalc.com. مؤرشف من الأصل في 28 يونيو2019. اطلع عليه بتاريخ 22 ديسمبر 2018.
  95. ^ Shallenberger, R. S. (1993). . Springer. صفحات 120–. ISBN . مؤرشف من الأصل فيثمانية يناير 2020.
  96. ^ Roy, Amit H. (2007). . Springer. صفحات 1135–57. Bibcode:2007karh.book....... ISBN . مؤرشف من الأصل في 24 يناير 2020.
  97. ^ Ochoa-Hueso, R; Delgado-Baquerizo, M; King, PTA; Benham, M; Arca, V; Power, SA (2019). "Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition". Soil Biology and Biochemistry. 129: 144–152. doi:10.1016/j.soilbio.2018.11.009.
  98. ^ (PDF). World Health Organization. 2009. صفحة 491. ISBN . مؤرشف من الأصل (PDF) في 13 ديسمبر 2016. اطلع عليه بتاريخ 08 يناير 2017.
  99. ^ "Potassium chloride medical facts from Drugs.com". www.drugs.com. مؤرشف من الأصل في 18 يناير 2017. اطلع عليه بتاريخ 14 يناير 2017.
  100. ^ British national formulary : BNF 69 (الطبعة 69). British Medical Association. 2015. صفحات 680, 684. ISBN .
  101. ^ Figoni, Paula I (2010). "Bleaching and Maturing Agents". How Baking Works: Exploring the Fundamentals of Baking Science. John Wiley and Sons. صفحة 86. ISBN .
  102. ^ Chichester, C. O. (July 1986). "Uses and Exposure to Sulfites in Food". Advances in food research. Academic Press. صفحات 4–6. ISBN .
  103. ^ Toedt, John; Koza, Darrell & Cleef-Toedt, Kathleen Van (2005). "Personal Cleansing Products: Bar Soap". Chemical composition of everyday products. Greenwood Publishing Group. ISBN .
  104. ^ Schultz, p. 95
  105. ^ Schultz, p. 99
  106. ^ Siegel, Richard S. (1940). "Ignition of the safety match". Journal of Chemical Education. 17 (11): 515. Bibcode:1940JChEd..17..515S. doi:10.1021/ed017p515.
  107. ^ Anger, Gerd; Halstenberg, Jost; Hochgeschwender, Klaus; Scherhag, Christoph; Korallus, Ulrich; Knopf, Herbert; Schmidt, Peter; Ohlinger, Manfred (2005), "Chromium Compounds", موسوعة أولمان للكيمياء الصناعية, 9, فاينهايم: وايلي-في سي إتش, صفحة 178, doi:10.1002/14356007.a07_067 CS1 maint: ref=harv (link)
  108. ^ Greenwood, p. 74
  109. ^ Marx, Robert F. (1990). . Courier Dover Publications. صفحة 93. ISBN . مؤرشف من الأصل في 24 ديسمبر 2015.
  110. ^ Gettens, Rutherford John & Stout, George Leslie (1966). . Courier Dover Publications. صفحات 109–110. ISBN . مؤرشف من الأصل في 24 يناير 2020.
  111. ^ Modugno, G.; Benkő, C.; Hannaford, P.; Roati, G.; Inguscio, M. (1999-11-01). "Sub-Doppler laser cooling of fermionic ${ ^{40 \mathrm{K $ atoms". Physical Review A. 60 (5): R3373–R3376. arXiv:cond-mat/9908102. Bibcode:1999PhRvA..60.3373M. doi:10.1103/PhysRevA.60.R3373.
  112. ^ Jackson, C. B.; Werner, R. C. (1957). "Ch. 18: The Manufacture of Potassium and NaK". Handling and uses of the alkali metals. 19. صفحات 169–173. doi:10.1021/ba-1957-0019.ch018. ISBN .
  113. ^ Kearey, Philip; Brooks, M & Hill, Ian (2002). "Optical Pumped Magnetometer". An introduction to geophysical exploration. Wiley-Blackwell. صفحة 164. ISBN .
  114. ^ "Potassium 244856". Sigma Aldrich. مؤرشف من الأصل في 1 أكتوبر 2018.
  115. ^ Solomon, Robert E. (2002). . Jones & Bartlett Learning. صفحة 459. ISBN . مؤرشف من الأصل في 2 أكتوبر 2014.
  116. ^ "DOE Handbook-Alkali Metals Sodium, Potassium, NaK, and Lithium". Hss.doe.gov. مؤرشف من الأصل في 28 سبتمبر 2010. اطلع عليه بتاريخ 16 أكتوبر 2010.
  117. ^ Wray, Thomas K. "Danger: peroxidazable chemicals" (PDF). Environmental Health & Public Safety, جامعة ولاية كارولاينا الشمالية. مؤرشف من الأصل (PDF) في 29 يوليو2016.
  118. Schonwald, Seth (2004). "Potassium Chloride and Potassium Permanganate". Medical toxicology. Lippincott Williams & Wilkins. صفحات 903–5. ISBN .
  119. ^ Markovchick, Vincent J. & Pons, Peter T. (2003). . Elsevier Health Sciences. صفحة 223. ISBN . مؤرشف من الأصل فيثمانية يناير 2020.

قراءة موسعة

  • Burkhardt, Elizabeth R. (2006). "Potassium and Potassium Alloys". Ullmann's Encyclopedia of Industrial Chemistry. A22. صفحات 31–38. doi:10.1002/14356007.a22_031.pub2. ISBN .
  • Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (الطبعة 2nd). Butterworth-Heinemann. ISBN .
  • Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (2007). "Potassium". Lehrbuch der Anorganischen Chemie (باللغة الألمانية) (الطبعة 91–100). Walter de Gruyter. ISBN .
  • Schultz, H.; et al. (2006). "Potassium compounds". Ullmann's Encyclopedia of Industrial Chemistry. A22. صفحات 39–103. doi:10.1002/14356007.a22_031.pub2. ISBN .
  • National Nutrient Database at USDA Website
تاريخ النشر: 2020-06-03 19:40:47
التصنيفات: بوتاسيوم, خصائص دوائية وأحيائية للعناصر الكيميائية, عناصر كيميائية, فلزات قلوية, مجففات, مختزلات, معادن غذائية, صيانة CS1: أسماء متعددة: قائمة المؤلفون, صفحات بها مراجع بالفرنسية (fr), قالب أرشيف الإنترنت بوصلات واي باك, صفحات بها مراجع بالألمانية (de), CS1 maint: ref=harv, صفحات تحتوي على وصلة دوي غير نشطة منذ 2019, صفحات تستخدم قالب:معلومات كيمياء مع وسائط غير معروفة, قالب تصنيف كومنز بوصلة كما في ويكي بيانات, صفحات بها بيانات ويكي بيانات, صفحات تستخدم خاصية P679, صفحات تستخدم خاصية P2566, صفحات تستخدم خاصية P2115, صفحات تستخدم خاصية P665, صفحات تستخدم خاصية P715, صفحات تستخدم خاصية P683, صفحات تستخدم خاصية P3117, صفحات تستخدم خاصية P232, صفحات تستخدم خاصية P661, صفحات تستخدم خاصية P231, صفحات تستخدم خاصية P662, صفحات تستخدم خاصية P267, صفحات تستخدم خاصية P652, معرفات مركب كيميائي, صفحات تستخدم خاصية P244, صفحات تستخدم خاصية P227, صفحات تستخدم خاصية P268, بوابة علم طبيعة الأرض/مقالات متعلقة, بوابة العناصر الكيميائية/مقالات متعلقة, بوابة الفيزياء/مقالات متعلقة, بوابة الكيمياء/مقالات متعلقة, بوابة طب/مقالات متعلقة, بوابة علوم/مقالات متعلقة, جميع المقالات التي تستخدم شريط بوابات, مقالات مختارة, الصفحات التي لا تقبل ربط البوابات المعادل

مقالات أخرى من الموسوعة

سحابة الكلمات المفتاحية، مما يبحث عنه الزوار في كشاف:

آخر الأخبار حول العالم

إنه الأهلي .. لا يعرف المستحيل

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2022-02-05 21:16:52
مستوى الصحة: 32% الأهمية: 45%

زيادة محطات الغاز على الطرق والمدن الجديدة

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:16:59
مستوى الصحة: 45% الأهمية: 68%

تحسن تدريجي بالأحوال الجوية.. «الأرصاد» تكشف حالة الطقس لمدة 5 أيام

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:00
مستوى الصحة: 45% الأهمية: 58%

أبو تريكة: إحنا الأهلي.. نريد التأهل لنهائي المونديال

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2022-02-05 21:16:51
مستوى الصحة: 44% الأهمية: 48%

وليد سليمان: اشكر رجال الأهلي.. والجمهور دائما في ظهر اللاعبين

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2022-02-05 21:16:49
مستوى الصحة: 37% الأهمية: 42%

كواليس اللحظات الأخيرة للراحل جلال الشرقاوي ووصيته لأبنائه | خاص

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:16:59
مستوى الصحة: 48% الأهمية: 57%

الأرصاد: غدا طقس مائل للبرودة نهارا.. وارتفاع أمواج البحر لمترين

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:02
مستوى الصحة: 59% الأهمية: 66%

مصدر مغربي: فريق إنقاذ الطفل ريان أمامه 80 سنتيمترا تستغرق ساعتين

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:04
مستوى الصحة: 60% الأهمية: 64%

الأهلي يفرض التعادل السلبي على مونتيري في الشوط الأول

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2022-02-05 21:16:54
مستوى الصحة: 36% الأهمية: 41%

غداً.. انطلاق الدورة التدريبية المشتركة الأولى لأئمة مصر وفلسطين

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:16:58
مستوى الصحة: 51% الأهمية: 60%

هدوء بالمواقف.. ولا زيادة في تعريفة الركوب

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:04
مستوى الصحة: 57% الأهمية: 52%

ريان تحت الأرض.. هذه أخبار غير صحيحة لا تصدقوها

المصدر: الأيام 24 - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:05
مستوى الصحة: 75% الأهمية: 72%

لاول مرة.. «كازانوفا» من موسم الرياض لمصر في عيد الفطر 

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:01
مستوى الصحة: 59% الأهمية: 61%

بـ15 رصاصة.. اغتيال قاضٍ وسط الشارع في العراق

المصدر: الإمارات اليوم - الإمارات التصنيف: مجتمع
تاريخ الخبر: 2022-02-05 21:17:21
مستوى الصحة: 57% الأهمية: 54%

بوريطة: سنكشف بالتفاصيل عن الوضع الصحي للطفل ريان

المصدر: الأيام 24 - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:11
مستوى الصحة: 64% الأهمية: 73%

فريق الإنقاذ يكذب الاشاعة: لم نصل بعد إلى ريان وبيننا سنتيمترات

المصدر: الأيام 24 - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:10
مستوى الصحة: 65% الأهمية: 82%

1667 شركة تستفيد من تيسيرات «الريف المصرى»

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:00
مستوى الصحة: 54% الأهمية: 64%

«الأرصاد»: ارتفاع درجات الحرارة يسبب ظهور الأعاصير المدمرة | صور

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:03
مستوى الصحة: 47% الأهمية: 53%

الخط العربي الأكثر جذبا بمعرض القاهرة الدولي للكتاب

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:16:58
مستوى الصحة: 58% الأهمية: 68%

وزيرة الهجرة: الاستفادة من خبراء مصر بالخارج في مجال الصناعة 

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:01
مستوى الصحة: 56% الأهمية: 51%

رامي ربيعة «أفضل لاعب» بمباراة الأهلي ومونتيري

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2022-02-05 21:16:48
مستوى الصحة: 32% الأهمية: 42%

معلول يكشف خطة الأهلي لعبور مونتيري في كأس العالم للأندية

المصدر: الأهلى . كوم - مصر التصنيف: رياضة
تاريخ الخبر: 2022-02-05 21:16:47
مستوى الصحة: 38% الأهمية: 37%

الإغلاق يطال شوارع بالبيضاء بسبب أشغال خطوط حافلات “كازاباصواي”

المصدر: الأيام 24 - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-02-05 21:17:08
مستوى الصحة: 64% الأهمية: 72%

تحميل تطبيق المنصة العربية