ليثيوم → هيليوم ← هيدروجين
-

He

Ne
2He
المظهر
غاز عديم اللون ذووميض أرجواني في حالة التفريغ الكهربائي


الخطوط الطيفية للهيليوم
الخواص العامة
الاسم، العدد، الرمز هيليوم، 2، He
تصنيف العنصر غاز نبيل
المجموعة، الدورة، المستوى الفرعي 18، 1، s
الكتلة الذرية 4.0026
توزيع إلكتروني 1s2
توزيع الإلكترونات لكل غلاف تكافؤ 2 (صورة)
الخواص الفيزيائية
الطور غاز
الكثافة (0 °س، 101.325 كيلوباسكال)
0.1786 غ/ل
كثافة السائل عند نقطة الانصهار 0.145 غ·سم−3
نقطة الانصهار (عند 2.5 ميغاباسكال) 0.95 ك، −272.20 °س
نقطة الغليان 4.22 ك، −268.93 °س
النقطة الحرجة 5.19 ك، 0.227 ميغاباسكال
حرارة الانصهار 0.0138
حرارة التبخر 0.0829
السعة الحرارية (عند 25 °س) 20.786 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن)     1.23 1.67 2.48 4.21
الخواص الذرية
الكهرسلبية لا بيانات (مقياس باولنغ)
طاقات التأين الأول: 2372.3
الثاني: 5250.5 كيلوجول·مول−1
نصف قطر تساهمي 28 بيكومتر
نصف قطر فان دير فالس 140 بيكومتر
خواص أخرى
البنية البلورية نظام بلوري سداسي مرصوص
المغناطيسية مغناطيسية معاكسة
الناقلية الحرارية 0.1513 واط·متر−1·كلفن−1 (300 كلفن)
سرعة الصوت 972 متر/ثانية
رقم CAS 7440-59-7
النظائر الأكثر ثباتاً
الموضوعة الرئيسية: نظائر الهيليوم
النظائر الوفرة الطبيعية عمر النصف نمط الاضمحلال طاقة الاضمحلال MeV ناتج الاضمحلال
He 0.000137%* 3He هونظير مستقر وله 1 نيوترون
He 99.999863%* 4He هونظير مستقر وله 2 نيوترون
*القيم حسب الوفرة في الغلاف الجوي، لكنها يمكن حتى تكون غير ذلك خارجه

الهيليوم هوعنصر كيميائي له الرمز He وله العدد الذري 2. يقع الهيليوم في الجدول الدوري ضمن عناصر الدورة الأولى وعلى رأس عناصر المجموعة الثامنة عشر ويمتلك بروتونين ونيوترونين في نواته ويحيط بها الكترونين. في الظروف القياسيّة من الضغط ودرجة الحرارة فإنّ الهيليوم تعبير عن غاز عديم اللون والرائحة، غير سام وليس له مذاق. ينتمي الهيليوم إلى الغازات النبيلة لذلك فهوغاز خامل أحادي الذرة، وبسبب خموله الكيميائي لا توجد جزيئات له، فهويوجد دائماً في صورته الذريّة. للهيليوم أقلّ درجة غليان وانصهار مقارنةً ببقيّة العناصر الكيميائيّة، وهويوجد أغلب الأحيان في الحالة الغازيّة باستثناء ظروف خاصة جداً.

يعدّ الهيليوم ثاني أخفّ العناصر في الكون بعد الهيدروجين، كما أنه ثاني أكثر العناصر وفرةً في الكون، حيث يشكّل 24% من الكون بالنسبة لكتلة العناصر. بالنسبة لوفرته على الأرض فإن الهيليوم نادر الوجود طبيعيّاً، حيث يشكّل فقط 5.2 جزء من المليون بالنسبة للغلاف الجوي. للهيليوم عدّة نظائر لكنّ أكثر من 99% من الهيليوم على الأرض هوهيليوم-4، والذي تتألّف نواته من بروتونين ونيوترونين اثنين.

يوجد غاز الهيليوم في بعض حقول الغاز الطبيعي بنسبة تصل إلى 7% حجماً، حيث يستخرج من هناك بواسطة التقطير التجزيئي. تجدر الإشارة إلى حتى مصادر الهيليوم قابلة للنفاد، حيث أنّه العنصر الوحيد الذي لديه سرعة إفلات، أي أنه عندما يطلق في الغلاف الجوي فإنه يتسرّب إلى الفضاء الخارجي.

يستخدم الهيليوم في تقنيّات التبريد العميق، وخاصة لتبريد أجهزة المغناطيس فائق الموصليّة المستخدمة في تقنيّات التصوير بالرنين المغناطيسي. كما يستفاد من الخواص الخاملة لغاز الهيليوم في استعماله كغاز واقي في اللحام القوسي وفي عمليات تصنيع رقائق السيليكون.

التاريخ

الاكتشاف وأصل التسمية

بيير جانسين

يعد الهيليوم العنصر الوحيد الذي اكتشف في الكون وذلك على الشمس قبل حتى يكتشف على الأرض. وقع ذلك عندما لاحظ الفلكي بيير جانسين وجود خط أصفر لامع في طيف الإصدار للغلاف اللوني للشمس أثناء حادثة كسوف كلّي للشمس في الهند عام 1868. في ذات العام لاحظ الفلكي جوزيف نورمان لوكير نفس الخط الأصفر من الطيف الضوئي للشمس، وأسماه خط فراونهوفر D3، لأن له طول موجة مقداره 587.49 نانومتر وهوقريب من خطوط D1 وD2للصوديوم. بعد ذلك، استنتج لوكير حتى الخط الطيفي هذا سببه عنصر موجود في الشمس وغير موجود على الأرض، فأطلق عليه سويّة مع إدوارد فرانكلاند الاسم الإغريقي للشمس ἥλιος هيليوس.

في عام 1895، استطاع العالم البريطاني وليام رامزي حتى يعزل الهيليوم على الأرض، عندما قام بمعالجة معدن الكليفيت (وهومعدن مشابه لليورانينيت مع وجود حوالي 10% من العناصر الأرضية النادرة) وذلك بأحماض معدنيّة. تسقط رامزي وجود الأرغون، ولكنه بعدما قام بفصل النيتروجين والأكسجين من الغازات المتحرّرة من أثر حمض الكبريتيك، لاحظ وجود خط أصفر مميّز في طيف إصدار المادّة المستخرجة، والذي يشبه خط D3 في طيف الشمس، وشخّصت هذه العيّنات على أنّها هيليوم من قبل لوكير والفيزيائي البريطاني وليام كروكس. في تجربة منفصلة قام العالم بير تيودور كليفه مع مساعده أبراهام لانغليت بجمع عينات من غاز الهيليوم من معدن الكليفيت في جامعة أوبسالا في السويد وذلك من أجل تحديد كتلته الذريّة.

اكتشافات فهميّة

وليام رامزي

في عام 1907، أظهر العالم إرنست رذرفورد مع توماس رويدز حتى جسيم ألفا هونواة الهيليوم، وذلك من خلال قيامه بالسماح لجسيمات ألفا حتى تخترق جدار زجاجي رقيق لأنبوب التفريغ، مما أدّى إلى حدوث تفريغ للشحنة والذي جاز بدراسة طيف الغاز في الداخل.

سُيّل الهيليوم لأول مرّة على يد الفيزيائي هايك كامرلينغ أونس عام 1908، وذلك بتبريد الغاز لأقل من درجة كلفن واحدة. حاول أونس الحصول على الحالة الصلبة من الهيليوم بتخفيض درجة الحرارة، لكنه لم يتمكّن من ذلك، لأنه لا توجد للهيليوم نقطة ثلاثيةقد يكون عندها توازن بين الحالات الثلاثة للمادة. بالرغم من ذلك، تمكّن تلميذ أونس الفيزيائي فيليم هندريك كيسوم من تصليب 1 سم3 من الهيليوم بتطبيق ضغط إضافي عند درجات حرارة منخفضة وذلك عام 1926.

في عام 1938، اكتشف الفيزيائي بيوتر كابيتسا حتى النظير هيليوم-4 عديم اللزوجة تقريباً في درجات قريبة من الصفر المطلق، وهي الظاهرة التي تعهد اليوم بالميوعة الفائقة. في عام 1972، لوحظت نفس الظاهرة لدى النظير هيليوم-3 وذلك من قبل الفيزيائيّين دوغلاس أوشيروف وديفد لي وروبرت ريتشاردسون، وحازوا بذلك جائزة نوبل في الفيزياء عام 1996.

الاستخراج والاستخدام

اكتشف وجود غاز الهيليوم مع الغاز الطبيعي في الأرض بكميات كافية للإنتاج عام 1903 أثناء التنقيب عن النفط في ديكستر في ولاية كانساس الأمريكية، حيث جمعت كمية من غاز غير قابل للاشتعال. بإجراء عملية تحليل للعيّنة في جامعة كانساس عثر حتى الغاز يتألّف من 72% نيتروجين و15% ميثان و1% هيدروجين و12% من غاز لم يتعرّف عليه حينئذ. بإجراء عملية درس أعمق عثر هاميلتون كادي وديفد ماكفارلاند من جامعة كانساس حتى 1.84% من العيّنة تعبير عن غاز الهيليوم. أظهرت هذه الأبحاث أنّه على الرغم من ندرة وجود الهيليوم على الأرض فإنّه يهجرّز تحت السهول الكبرى بكميّات كبيرة كافية كناتج ثانوي في عملية استخراج الغاز الطبيعي.

هذه الوقائع جعلت من الولايات المتحدة أكبر مزوّد للهيليوم، وجرى الاستفادة من ذلك في الحرب العالميّة الأولى في تعبئة المناطيد الحاجزة بغاز أخف من الهواء مثل الهيدروجين، لكنّه غير قابل للاشتعال. بناءً على ذلك جرى استعمال الهيليوم في تجهيز المناطيد العسكريّة. أوّل منطاد استخدم لهذا الغرض سمّي U.S. Navy's C-7 وأقلعت أول رحلة تجريبيّة له من هامبتون رودز في ولاية فيرجينيا إلى قاعدة بولينغ فيلد العسكريّة في واشنطن في الأوّل من ديسمبر عام 1921. استمرّ استخدام الهيليوم في المجال العسكري حتى الحرب العالميّة الثانيّة في عمليّات اللحام القوسي من أجل التجهيزات العسكريّة واستخدم كغاز لكشف التسريبات في عملية الانتشار الغازي أثناء تخصيب اليورانيوم لتصنيع القنبلة الذريّة في مشروع مانهاتن.

الوفرة الطبيعيّة

يشكّل الهيليوم حوالي 19% من الغلاف الغازي الخارجي لكوكب نبتون.

على الرغم من ندرته على سطح الأرض فإن الهيليوم يعدّ ثاني أكثر العناصر بعد الهيدروجين وفرة في الكون مشكّلاً 23% من كتلته الباريونيّة. تشكّلت هذه الكميّة الهائلة من الهيليوم بعد فترة قليلة من الانفجار العظيم. يتشكّل الهيليوم في النجوم نتيجة الاندماج النووي للهيدروجين في تفاعل بروتون-بروتون المتسلسل ودورة كربون-نيتروجين-أكسجين (دورة CNO)، والتي تعدّ جزءاً من تفاعلات الانصهار النجمي.

إنّ هجريز الهيليوم في الغلاف الجوي للأرض يعادل 5.2 جزء في المليون، وهويهجرّز في طبقات الجوالعليا من غلاف الأرض الجوي. هذا الهجريز الضئيل ثابت نسبياً في الغلاف الجوّي رغم الإنتاج المستمرّ للهيليوم، ويعود ذلك إلى انفلات الغاز من الغلاف الجوّي للأرض إلى الفضاء الخارجي وذلك بعدّة آليّات مقترحة.

يدخل الهيليوم في هجريب الغلاف الغازي للعديد من الكواكب بنسب تظهر في الجدول التالي:

نبتون 19 % ± 3.2 %
أورانوس 15.2 % ± 3.3 %
المشتري 10.2 %
زحل 3.25 %
الزهرة 12 جزء في المليون
الأرض 5.2 جزء في المليون

إنّ معظم الهيليوم الموجود على الأرض هونتيجة الاضمحلال الإشعاعي للعناصر الثقيلة نتيجة إطلاق جسيمات ألفا 2+He، والتي تتجمّع إلكتروناتها لتشكّل الهيليوم عندما تصطدم بالغلاف الصخري. لذلك يوجد الهيليوم بكميّات كبيرة نسبياً في هجريب عدّة معادن لليورانيوم والثوريوم بسبب إطلاقها لجسيمات ألفا أثناء اضمحلالها الإشعاعي مثل اليورانينيت (خاصةً الكليفيت، وهوأحد مشتقّات اليورانيتيت) والكارنوتيت والمونازيت. على هذا الأساس ينتج سنوياً حوالي 3000 طن متري من الهيليوم عبر غلاف الأرض الصخري. إنّ هجريز الهيليوم في القشرة الأرضية هوثمانية جزء في البليون، وفي مياه البحار فقط حوالي أربعة جزء في الترليون. توجد كمّيّات قليلة من الهيليوم في الينابيع المعدنيّة والغازات البركانيّة والأحجار النيزكيّة.

إنّ المصدر الطبيعي الأكبر للهيليوم هووجوده في بعض آبار الغاز الطبيعي نتيجة احتباسه تحت الطبقات الصخريّة للأرض. تختلف التراكيز حسب المواقع من عدّة أجزاء في المليون إلى حوالي 7% حجماً من كميّة الغاز المستخرجة كما في حقل الغاز في مقاطعة سان خوان في نيومكسيكو.

الإنتاج

ينتج غاز الهيليوم بشكلٍ صناعي بعملية التقطير التجزيئي للغاز الطبيعي، والذي يمكن حتى يوجد بنسبة تصل حتى 7% حجماً. بما حتى للهيليوم نقطة غليان أقلّ من أيّ عنصر كيميائي آخر، فإنّ تطبيق درجات حرارة منخفضة عند ضغوط مرتفعة يؤدي إلى تسييل الغازات الأخرى مثل النيتروجين والميثان. بعد ذلك تجري عملية تنقية لغاز الهيليوم بالتعريض المتتالي لدرجات حرارة منخفضة بحيث يضمن عدم بقاء أي أثر لغازات أخرى. كخطوة نهائية للتنقية يستعمل الفحم المنشّط مما يعطي نقاوة تصل إلى 99.995% وتدعى بنقاوة من الدرجة A. إنّ الشائبة الرئيسيّة في الهيليوم من الدرجة A هوغاز النيون. في فترة الإنتاج النهائيّة يسيّل الهيليوم من خلال عمليات تبريد عميقة بحيثقد يكون على شكل هيليوم سائل، ممّا يسهّل من عملية النقل، حيث حتى حاوية نقل الهيليوم كسائل تسع أكثر بخمسة أضعاف الحجم الذي تنقله حاويات الهيليوم كغاز.

تعدّ الولايات المتّحدة الأمريكيّة أكبر منتج لغاز الهيليوم حيث أتت فترة كانت تنتج فيها أكثر من 90% من الاحتياج العالمي لهذا الغاز، وما تظل تنتجه محطّات توجد في كندا وبولونيا وروسيا، بالإضافة إلى عدّة دول أخرى. إنّ معظم الهيليوم المستخرج في الولايات المتّحدة هومن حقل هيوغوتون للغاز في ولاية كانساس، بالإضافة إلى حقول أخرى في أوكلاهوما وفي حقل بانهاندل في تكساس. للهيليوم استهلاك كبير في الولايات المتّحدة، ومنذ أوائل القرن العشرين فإن للولايات المتّحدة مخزون وطني من هذه الخامة. قُدّر استهلاك الولايات المتحدة من غاز الهيليوم عام 2000 بحوالي 15 مليون كغ سنوياً. في منتصف التسعينات افتتحت محطّة جديدة لتوليد الهيليوم في مدينة أرزيوالجزائريّة لها القدرة على إنتاج 17 مليون متر مكعّب من غاز الهيليوم مما يغطّي الطلب الأوروبي من الهيليوم في السوق العالمي. وبين عامي 2004 و2006 افتتحت محطّتان جديدتان لإنتاج الهيليوم وذلك في رأس لفان في قطر وفي مدينة سكيكدة في الجزائر. مع افتتاح محطّة سكيكدة أصبحت الجزائر ثاني منتج للهيليوم في السوق العالمي. حسب إحصاءات أجريت عام 2008، فقد استخرج حوالي 169 مليون متر مكعّب من الهيليوم من الغاز الطبيعي وذلك بنسبة 78% من الولايات المتحدة الأمريكية و10% من الجزائر ومعظم ما تبقّى تنتجه دول متعدّدة على رأسها روسيا وبولونيا وقطر.

إنّ ازدياد الطلب العالمي على الهيليوم ومحدوديّة الإنتاج أدّيا إلى ازدياد ثمن إنتاج الهيليوم في العالم، بحيث أنه بين عامي 2002 و2007 ازداد ثمن الهيليوم بمقدار الضعف. نتيجة محدوديّة موارد الهيليوم تجري حالياً استخدام تقنيّات يطبق فيها انتشار للغاز الطبيعي الخام عبر أغشية نصف نفوذة من أجل استرجاع وتنقية الهيليوم.

النظائر

هنالك تسعة نظائر معروفة للهيليوم، اثنان منها فقط تعبير عن نظائر مستقرّة وهي هيليوم-4 4He وهيليوم-3 3He. يعدّ النظير هيليوم-4 هوالنظير الطبيعي الأكثر وفرةً حيث حتى 99.99986% من عنصر الهيليوم في الطبيعة هوهيليوم-4، وما تبقّى فهوهيليوم-3. إحصائيّاً هنالك ذرّة هيليوم-3 واحدة لقاء مليون ذرّة هيليوم-4. ينتج النظير هيليوم-4 في الأرض كناتح لعمليّة اضمحلال ألفا للعناصر المشعّة الأثقل حيث تنتج جسيمات ألفا، والتي هي تعبير عن نوى هيليوم مشحونة. تتميّز نواة النظير هيليوم-4 بثباتيّة عاليّة لأن نويّاتها مرتّبة بشكل تام في غلافها النووي. إنّ الكميّات النادرة للنظير هيليوم-3 موجودة في الطبيعة منذ نشأة الأرض، بالإضافة إلى هبوط كمّيّات مصدرها من الكون، والتي كانت محتجزة ضمن الغبار الكوني، كما تنتج كمّيّات قليلة من الهيليوم-3 من اضمحلال بيتا للتريتيوم.

خواص النظائر 3He 4He
الطاقة الساكنة (ميغا إلكترون فولت) 2809 3728
الكثافة كغ/م3 0.134 0.178
درجة الحرارة الحرجة (كلفن) 3.32 5.20
نقطة لامدا (كلفن) 0.0025 2.1768
الضغط عند الانصهار (ميغا إلكترون فولت) عند 0 كلفن 3.439 2.536
نقطة الانصهار (كلفن) 3.19 4.21

إنّ تفاوت نسبة النظيرين هيليوم-3 وهيليوم-4 في الصخور يستخدم من أجل تحديد عمر الصخور وفهم أصل منشأها في الغلاف الصخري للأرض. إنّ نسبة النظير هيليوم-3 3He إلى هيليوم-4 4He في الكون أعلى منها على الأرض بحوالي 100 مرّة وذلك في الوسط بين النجمي. كما أنّ وفرته في النجوم كبيرة نسبياً نتيجة الاندماج النووي. إنّ المواد الكونيّة مثل الحطام الصخري للأقمار والأحجار النيزكية تحوي أيضاً نسب من هيليوم-3، والتي اصطحبتها الرياح الشمسيّة، كما أنّ سطح القمر يحوي الهيليوم-3 بتراكيز أعلى منها على سطح الأرض.

إنّ مزيج من كمّيّتين متساويتين من 3He و4He السائل تحت 0.8 كلفن سينفصل إلى طبقتين غير مزوجتين وذلك نتيجة لتباين الإحصاءات الكموميّة لهما، حيث حتى 4He تعبير عن بوزون، في حين أنّ 3He فرميون. يستفاد من خاصة عدم امتزاج هذين النظيرين في ثلاجة التمديد، حيث يمكن استعمال هذا التطبيق للحصول على درجات حرارة بحدود بضعة ميلي كلفن.

الخواص الفيزيائيّة

الهيليوم في ميكانيكا الكم

تمثيل لذرّة الهيليوم تظهر فيه نواة ذرّة الهيليوم في المنتصف وحولها السحابة الإلكترونيّة.

من منظور ميكانيكا الكم فإنّ الهيليوم ثاني أبسط ذرّة يمكن إجراء نموذج لها بعد ذرّة الهيدروجين. يتألّف الهيليوم من نواة تتألّف من بروتونين ونيوترونين اثنين، يحيط بهما إلكترونين اثنين في مداراتها الذريّة. حسب ميكانيك نيوتن التقليدي فإنه من غير الممكن تقديم حل رياضي تحليلي لنظام يتألّف من أكثر من جسيمين اثنين، وذلك حسب معضلة الأجسام الثلاث. بناءً على ذلك، تستخدم وسائل رياضيّة عدديّة عن طريق الكيمياء الحاسوبية لوضع نموذج ميكانيكي كمّي لارتباط إلكترونات الهيليوم بالنواة. رغم بساطة نموذج النواة ظاهرياً فإن معادلات معقّدة ضروريّة لوضع محاكاة لنموذج الذرّة الحقيقي.

أطوار الهيليوم

إنّ الهيليوم في الأحوال العادية تعبير عن غاز، وعند درجات حرارة منخفضة عند نقطة انصهاره يصبح بالطور السائل. إلا أنّ الهيليوم هوالعنصر الوحيد الذي لا يمكن الحصول على الطور الصلب منه تحت ظروف الضغط العادي. يجب حمل الضغط إلى قيم تصل نحو2.5 ميغا باسكال عند درجات حرارة منخفضة جداً (أقل من 1.5 كلفن أي ما يعادل −272 °س).

يشكّل الهيليوم الصلب بلّورات ولكن لا يمكن فصل الهيليوم الصلب عن السائل بصريّاً، لأن قرينة الانكسار لهما متقاربة جداً. للهيليوم الصلب قابلية انضغاط عالية، بحيث أنه من الممكن مخبريّاً إنقاص حجمه بأكثر من 30%. تبلغ كثافة الهيليوم الصلب 0.214 ± 0.006 غ/سم3 عند 1.15 كلفن و66 جو، والكثافة المتسقطة عند 0 كلفن وضغط قدره 25 بار هي 0.187 ± 0.009 غ/سم3.

الطور الغازي وحالة البلازما

غاز الهيليوم في أنبوب تفريغ على شكل الرمز الكيميائي للعنصر

يكون الهيليوم في في الطور الغازي في أغلب الحالات، وذلك على شكل غاز أحادي الذرة وعديم اللون والرائحة. بسبب كتلته الذرّيّة المنخفضة فإنّ للهيليوم ناقليّة وسعة حراريّة أعلى من أيّ غاز آخر عدا الهيدروجين، كما حتى معدل انتشاره في الأجسام الصلبة أعلى بثلاث مرات من الهواء وحوالي 65% من قيمة انتشار الهيدروجين. لدى الهيليوم قرينة انكسار ثابتة مقارنة مع الغازات الأخرى بحيث أنه يستخدم كمادة قياسية لتسليم الأخطاء في أجهزة قياس قرينة الانكسار للحالة الغازيّة. عند درجات الحرارة العاديّة فإنّ للهيليوم معامل جول-طومسون سالب، ممّا يعني أنه يسخن عندما يسمح له بالتمدّد، وفقط عند درجة حرارة الانعكاس والتي تتراوح بين 32 و50 كلفن عند ضغط مقداره 1 جوّ، فإنّ الهيليوم يبرد عندما يتمدّد. عندما تخفّض درجة حرارة الهيليوم دون درجة الحرارة هذه فإنّ الهيليوم يمكن حتى يسيّل عن طريق التبريد بالتمديد.

إنّ أغلب الهيليوم الكونيقد يكون في حالة البلازما، والتي لها خواص مختلفة تماماً عن الهيليوم الذرّي. في حالة البلازما لا ترتبط الإلكترونات بالنواة ممّا يؤدي إلى ازدياد الناقليّة الكهربائيّة، حتّى وإن كان الغاز مؤيّناً بشكل جزئي. إنّ الجسيمات المشحونة تتأثّر بالحقول الكهربائية والمغناطيسيّة، وهذا ما يحدث لجسيمات الهيليوم والهيدروجين في الكون في الرياح الشمسيّة عندما يحدث تأثير متبادل مع الغلاف المغناطيسي للأرض ممّا يؤدّي إلى تشكّل تيارات بيركلاند والشفق القطبي.

الطور السائل والميوعة الفائقة

صورة للهيليوم السائل وهوفي حالة الميوعة الفائقة تظهر محاولة قطيرات الهيليوم الهروب من الوعاء الذي يحويها.

هناك حالتين مختلفتين للهيليوم في الطور السائل تعهدان بحالة الهيليوم I وحالة الهيليوم II.

حالة الهيليوم I
عكس السوائل العادية، فإن الهيليوم II يتسلق على جدران الوعاء الذي يحويه، بظاهرة تعهد باسم طبقة رولن.

عندماقد يكون الهيليوم دون نقطة غليانه والتي تبلغ 4.22 كلفن وفوق نقطة لامدا التي تبلغ 2.1768 كلفن، فإنّ الهيليومقد يكون في حالة سائلة عديمة اللون تدعى حالة الهيليوم I. إنّ الهيليوم في حالته السائلة هيليوم I له قرينة انكسار شبيهة بالغازات مقدارها 1.026، كما حتى له لزوجة منخفضة جداً وكثافة تتراوح بين 0.145–0.125 غ/مل.

حالة الهيليوم II

عندما تنخفض درجة حرارة الهيليوم السائل دون نقطة لامدا فإنه يبدأ بإظهار خواص غير عادية، وتدعى هذه الحالة هيليوم II. عندما يغلي الهيليوم وهوفي الحالة II فإنه نتيجة لناقليته الحرارية المرتفعة لا يظهر فقاعات ولكن يتبخر بشكل مباشر من على السطح. هذه الحالة يمكن ملاحظتها في النظير هيليوم-4 كما يظهرها النظير هيليوم-3 ولكن بدرجات حرارة أقل مما هي عليه للهيليوم-4، ولا يعهد الكثير لحد الآن عن خواص الهيليوم-3 في الحالة II

يظهر الهيليوم وهوفي الحالة II خواص الميوعة الفائقة، بحيث حتى لزوجته منخفضة جداً تقارب الصفر. لتفسير ذلك اقترحت إحدى النظريات وجود نموذج السائلين بالنسبة للهيليوم II، حيثقد يكون الهيليوم السائل دون نقطة لامدا مؤلفاً من مزيج من سائلين، الأوّل يحوي نسبة من ذرّات الهيليوم في الحالة الأرضيّة وتكون في حالة من الميوعة الفائقة وتتدفّق بدون حتىقد يكون لها أي لزوجة، في حين حتى القسم الثاني يحوي نسبة من ذرات الهيليوم في الحالة المثارة، والتي تتصرف كسائل عادي له لزوجة.

من الخواص التي يظهرها الهيليوم وهوفي حالة الميوعة الفائقة هي خاصيّة التسلق، حيث يمكن للهيليوم وهوفي هذه الحالة حتى يتسرّب ويتسلّق جدران الوعاء الذي يحويه حتى يصل إلى منطقة أسخن بحيث يتبخّر. يشكّل الهيليوم فائق الميوعة بذلك طبقة رقيقة (رقاقة) سماكتها حوالي 30 نانومتر وتدعى باسم رقاقة رولن Rollin film، نسبةً إلى مكتشفها بيرنارد رولن. نتيجةً للخواص التسلقيّة هذه للهيليوم فائق الميوعة فإنه من الصعوبة احتواء الهيليوم السائل.

الخواص الكيميائيّة

أيون هيدريد الهيليوم +HHe.
البنية المحتملة لأنيون فلوروهيليات
-OHeF.

ينتمي الهيليوم إلى فصيلة الغازات النبيلة، وهويحوي إلكترونين اثنين في طبقة غلاف التكافؤ الخارجيّة، بحيث حتى المدارات الإلكترونية مكتملة 1S2، بالتالي فهوغاز خامل، وهوأقلّ الغازات النبيلة من حيث النشاط الكيميائي بعد النيون، وبالتالي ثاني أقل العناصر الكيميائيّة من حيث النشاط الكيميائي. لا يبدي الهيليوم أيّ نشاط كيميائي تحت كافة الشروط الطبيعيّة.

يكون الهيليوم على شكل أحادي الذرة في أغلب حالات المادة، كما أنه أقلّ غاز أحادي الذرة انحلاليّة (ذوبانيّة) في الماء، ولا يسبقه بضعف الانحلاليّة في الماء إلا بعض الغازات مثل رباعي فلوروالميثان CF4وسداسي فلوريد الكبريت SF6وثماني فلوروحلقي البوتان C4F8 والتي لها انحلاليّة (معبّراً عنها بالكسر المولي) تعادل 0.3802 x2/10−5 و0.4394 x2/10−5 و0.2372 x2/10−5 على الترتيب، لقاء 0.70797 x2/10−5 للهيليوم.

المركّبات الكيميائيّة

لا توجد مركّبات كيميائيّة للهيليوم في الظروف القياسيّة من الضغط ودرجة الحرارة، ولكن عندما يعرّض الهيليوم إلى ظروف غير طبيعيّة من الضغط أونتيجة قذف إلكتروني لنواة الهيليوم فإنّه يمكن حتى يشكّل مركّبات كيميائيّة غير مستقرّة تعهد باسم الثنائيات المثارة (إكسايمر) وذلك مع عناصر مثل التنغستن واليود والفلور والكبريت والفوسفور، وذلك عندما تخضع للتفريغ المتوهج أوالقذف الإلكتروني.

تحت ظروف التفريغ المرتفعة في جهاز مطيافية الكتلة يمكن حتى يتشكّل أيون هيدريد الهيليوم ولكنّه غير قابل للعزل. إنّ +HeH في حالته الأرضيّة مستقرّ، ولكنه نشيط كيميائيّاً بشكل كبير جداً، بحيث يعدّ أقوى حمض وفق نظرية برونستد-لوري حيث أنه يمنح البروتون بشكل فوري عند تماسه مع أيّ جزيء أومركب، وذلك بغضّ النظر عن الهجريز. نظريّاً، يمكن حتى توجد هناك مركبات أخرى للهيليوم مثل فلوروهيدريد الهيليوم HHeF، وذلك قياساً لمركب فلوروهيدريد الأرغون. أظهرت حسابات الكيمياء النظريّة إمكانيّة وجود مركبات أخرى للهيليوم حاوية على رابطة هيليوم-أكسجين، والتي يمكن حتى تكون مستقرّة.

جرى مؤخراً حبس ذرة الهيليوم داخل قفص كربوني، وذلك عند تسخين الفوليرينات إلى درجات حرارة مرتفعة بوجود الهيليوم. يتشكّل حينها ما يعهد باسم الفوليرينات ذات السطح الداخلي endohedral fullerene، والتي تظل محتوية على الهيليوم محتجزاً داخلها حتّى حين إجراء اشتقاق مركّبات كيميائيّة منها. وفي حال استعمال النظير هيليوم-3 يمكن حتى يكشف ذلك باستعمال مطيافية الرنين المغناطيسي النووي للهيليوم. لا تعدّ هذه المركّبات مركّبات للهيليوم بالمعنى الحقيقي للحدثة، إذ لا توجد دلائل على حدوث نوع من الرابطة الكيميائيّة بينها وبين العناصر المحيطة بها، إلا حتى هذه المركّبات لها خواص مميّزة عن غيرها، ولها صيغة ستوكيومتريّة خاصّة بها. يرمز لهذه المركّبات بالأسلوب التالي: He@C60.

الاستخدامات

إنّ أكبر استهلاك للهيليوم هواستخدامه في تبريد أجهزة المغناطيس فائقة الموصلية المستخدمة في تقنيّات عدّة كالتصوير بالرنين المغناطيسي على سبيل المثال.

يستخدم الهيليوم في عدة مجالات وتطبيقات بما يتناسب مع خواصه المميّزة، مثل انخفاض نقطة غليانه وكثافته وانحلاليّته المنخفضة، بالإضافة إلى ناقليّته الحراريّة المرتفعة وخواصه الخاملة. بلغ الإنتاج العالمي من الهيليوم عام 2008 حوالي 32 مليون كغ (ما يعادل 193 مليون متر مكعّب)، وكان أكبر استهلاك له (حوالي 22%) في تبريد أجهزة المغناطيس فائق الموصلية المستخدمة في عدة تقنيّات مثل أجهزة التصوير بالرنين المغناطيسي. إنّ مصادم الهدرونات الكبير في سرن CERN يستخدم حوالي 96 طن متري من الهيليوم السائل للحفاظ على درجات حرارة دون 1.9 كلفن.

نتيجة خموله الكيميائي، يستخدم الهيليوم كغاز واقي في إنتاج رقائق السيليكون والجرمانيوم وفي إنتاج التيتانيوم والزركونيوم وفي الاستشراب الغازي. كما يستخدم الهيليوم كغاز واقي في عمليّات اللحام القوسي على المواد التي يؤدّي لحامها عند درجات حرارة مرتفعة إلى إشابتها أوإضعافها بالهواء أوبالنيتروجين. يستخدم الهيليوم عوضاً عن الأرغون للحام المواد التي لها ناقليّة حراريّة مرتفعة مثل الألمنيوم أوالنحاس.

جهاز لكشف التسريبات باستخدام غاز الهيليوم.

من إحدى التطبيقات الصناعيّة لغاز الهيليوم استخدامه في كشف التسريب في الأجهزة التي تستخدم تفريغ مرتفع مثل الحاويات المستخدمة في التبريد العميق، وذلك لأن الهيليوم ينتشر في الأجسام الصلبة أسرع بثلاث مرات من الهواء. يوضع الجهاز المراد كشف التسريب فيه في حجرة تخلّى من الهواء وتملأ بالهيليوم، ويقاس الهيليوم الذي ينفد من مكان التسريب باستخدام أجهزة مخصصة لذلك. باللقاء يمكن ملء الجهاز المراد كشف التسريب فيه بالهيليوم ويكشف عن مكان التسريب بجهاز يمرر يدويّاً على الجهاز بالكامل.

يستخدم الهيليوم في ملء المناطيد

لأنّ وزنه أخف من الهواء، يستخدم الهيليوم في ملء السفن الهوائية والمناطيد لتتمكّن من الطيران. على الرغم من أنّ الهيدروجين أخفّ من الهيليوم، لكنّه قابل للاشتعال، في حين أنّ الهيليوم لا يشتعل.

يدخل الهيليوم في هجريب غازات التنفس في أجهزة الغوص العميق، مثل تريمكس وهيليوكس، وذلك للتخفيف من الآثار التخديرية لغازات التنفس عند الضغوط المرتفعة. عثر أنّ الغوص إلى أعماق دون 150 متر باستخدام أجهزة تنفس أكسجين-هيليوم تؤدّي إلى حدوث رعاش واضطراب في الوظائف الحسّيّة الحركيّة، ممّا يعدّ مؤشّراً على حدوث أعراض متلازمة الضغط العالي العصبي، أوما يعهد باسم رعاش الهيليوم. هذا الأثر يمكن حتى يعود إلى حدّ ما نتيجة إضافة كمّيّات من غاز له خواص تخديريّة في الغطس مثل الهيدروجين أوالنيتروجين إلى مزيج أكسجين-هيليوم. في أعماق كهذه، عثر حتى الكثافة المنخفضة للهيليوم لها دور في تخفيف الجهد المبذول للتنفس.

استخدم ليزر هيليوم-نيون، وهونوع من ليزر الغاز له طاقة منخفضة، وذلك من أجل إنتاج حزمة حمراء اللون، وذلك في عدّة تطبيقات مثل قارئ الشفرة الخيطية ومؤشر الليزر، وذلك قبل حتى يستبدل بليزر الصمام الثنائي.

يستخدم الهيليوم كوسط لتبادل الحرارة في بعض المفاعلات النوويّة المبرّدة بالغاز وذلك بسبب خموله الكيميائي وبسبب ناقليّته الحراريّة العاليّة، وعدم تأثره بالنيوترونات، ولعدم تشكيله نظائر مشعّة تحت شروط عمل المفاعل.

عند مزج الهيليوم مع غاز أثقل مثل الزينون فإنّه يستخدم في المحركات الصوتيّة الحراريّة المستخدمة في التبريد، وذلك نتيجةً لارتفاع نسبة السعة الحرارية الناتجة ولانخفاض عدد برانتل. إنّ خمول غاز الهيليوم له آثار إيجابيّة على البيئة لقاء أنظمة التبريد التقليديّة التي تؤدي إلى نضوب الأوزون والاحترار العالمي.

إنّ استعمال الهيليوم يقلّل من الآثار المشوّشة في بعض المقاريب، والتي تحصل نتيجة تفاوت درجة الحرارة في الفراغ بين العدسات، وذلك بسبب الانخفاض الكبير لقيمة قرينة الانكسار بالنسبة للهيليوم. تعد هذه طريقة عملية بالنسبة للمقاريب الشمسية التي تكون بحاجة إلى استخدام أنبوب تفريغ والذي غالباً ماقد يكون ثقيل الوزن.

الاستنشاق وإجراءات الأمان

الآثار

إنّ الهيليوم في الشروط العادية تعبير عن غاز غير سام وليس له تأثير حيوي على جسم الإنسان عند التعرّض له. ولكن عندما يستنشق الهيليوم عن طريق الفم فإنّ له تأثير على الحبال الصوتيّة بحيث يظهر الصوت كأنه مُسرّع. سبب هذا الأثر أنّ سرعة الصوت في الهيليوم أسرع منها بثلاث مرات من الهواء. بما أنّ التردّد الأساسي لتجويف مملوء بغاز متناسب مع سرعة الصوت في هذا الغاز، لذلك فإنّه عندما يستنشق الهيليوم فإنّ هنالك ازدياد في رنين المجرى الصوتي. إنّ تردّدات الرنين العالية تسبّب اختلاف في طابع الصوت بحيث يظهر متسارعاً (مزقزق، كما يعهد أحياناً باسم صوت ميكي ماوس). إنّ التأثير المعاكس بتخفيض تردّد الرنين يمكن الحصول عليه باستنشاق غاز كثيف مثل سداسي فلوريد الكبريت أوالزينون.

المخاطر

إنّ المبالغة في استنشاق الهيليوم لتحقيق أثره على الحبال الصوتيّة يمكن حتىقد يكون خطراً، حيث يؤدّي إلى الاختناق لأنّه يحلّ محلّ الأكسجين اللازم لعمليّة التنفّس. سجّلت حالات وفاة ناتجة عن المبالغة في استنشاق الهيليوم، من بينهم أطفال وبالغين.

إنّ استنشاق الهيليوم مباشرةً من الأسطوانات المضغوطة خطر جداً، حيث يمكن حتى يؤدّي إلى حدوث رضح ضغطي نتيجة معدّل السرعة العالي للهيليوم المتدفّق، والذي يمكن حتى ينجم عنه تمزّق مميت لأنسجة الرئتين.

ينبغي اتّباع إجراءات الأمان اللازمة عند التعامل مع الهيليوم السائل، لأنّ درجة الحرارة المنخفضة يمكن حتى تؤدّي إلى عضة برد. كما ينبغي الانتباه إلى ضرورة ضبط الضغط لأنّ نسبة تمدد السائل-إلى-الغاز المرتفعة يمكن حتى تؤدّي إلى حدوث انفجارات إذا لم يكن هناك صمّامات ضغط متوفّرة.

اقرأ أيضاً

  • غاز نبيل

المراجع

  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ Connor, Steve (2010-08-23). "Why the world is running out of helium – Science – News". London: The Independent. مؤرشف من الأصل في 13 يونيو2018. اطلع عليه بتاريخ 16 سبتمبر 2013.
  3. ^ Posted by Ethan on December 12, 2012 (2012-12-12). "Why the World Will Run Out of Helium – Starts With A Bang". Scienceblogs.com. مؤرشف من الأصل في أربعة مايو2019. اطلع عليه بتاريخ 16 سبتمبر 2013.
  4. ^ Witchalls, Clint (18 August 2010) Nobel prizewinner: We are running out of helium. New Scientist. نسخة محفوظة 08 يونيو2015 على مسقط واي باك مشين.
  5. ^ Kochhar, R. K. (1991). "French astronomers in India during the 17th – 19th centuries". Journal of the British Astronomical Association. 101 (2): 95–100. Bibcode:1991JBAA..101...95K.
  6. Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. صفحات 175–179. ISBN .
  7. Clifford A. Hampel (1968). The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. صفحات 256–268. ISBN .
  8. ^ "Helium". Oxford English Dictionary. 2008. مؤرشف من الأصل فيسبعة أبريل 2020. اطلع عليه بتاريخ 20 يوليو2008.
  9. ^ Thomson, W. (1872). Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from D, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call Helium. Rep. Brit. Assoc. xcix.
  10. ^ Thomson, William (August 3, 1871). "Inaugural Address of Sir William Thompson". Nature. 4 (92): 261–278 [268]. Bibcode:1871Natur...4..261.. doi:10.1038/004261a0. مؤرشف من الأصل في 2 ديسمبر 2016.
  11. ^ Ramsay, William (1895). "On a Gas Showing the Spectrum of Helium, the Reputed Cause of D3، One of the Lines in the Coronal Spectrum. Preliminary Note". Proceedings of the Royal Society of London. 58 (347–352): 65–67. doi:10.1098/rspl.1895.0006.
  12. ^ Ramsay, William (1895). "Helium, a Gaseous Constituent of Certain Minerals. Part I". Proceedings of the Royal Society of London. 58 (347–352): 80–89. doi:10.1098/rspl.1895.0010.
  13. ^ Ramsay, William (1895). "Helium, a Gaseous Constituent of Certain Minerals. Part II--". Proceedings of the Royal Society of London. 59 (1): 325–330. doi:10.1098/rspl.1895.0097.
  14. ^ Langlet, N. A. (1895). "Das Atomgewicht des Heliums". Zeitschrift für anorganische Chemie (باللغة الألمانية). 10 (1): 289–292. doi:10.1002/zaac.18950100130.
  15. ^ Weaver, E.R. (1919). "Bibliography of Helium Literature". Industrial & Engineering Chemistry.
  16. ^ van Delft, Dirk (2008). "Little cup of Helium, big Science" (PDF). Physics today: 36–42. مؤرشف من الأصل (PDF) في 25 يونيو2008. اطلع عليه بتاريخ 20 يوليو2008.
  17. ^ van Delft, Dirk (2008). "Little cup of Helium, big Science" (PDF). Physics Today. 61 (3): 36–42. Bibcode:2008PhT....61c..36V. doi:10.1063/1.2897948. مؤرشف من الأصل (PDF) في 25 يونيو2008. اطلع عليه بتاريخ 20 يوليو2008.
  18. ^ "Coldest Cold". Time Inc. 1929-06-10. مؤرشف من الأصل في 21 يوليو2013. اطلع عليه بتاريخ 27 يوليو2008.
  19. ^ Kapitza, P. (1938). "Viscosity of Liquid Helium below the λ-Point". Nature. 141 (3558): 74. doi:10.1038/141074a0.
  20. ^ Osheroff, D. D.; Richardson, R. C.; Lee, D. M. (1972). "Evidence for a New Phase of Solid He3". Phys. Rev. Lett. 28 (14): 885–888. Bibcode:1972PhRvL..28..885O. doi:10.1103/PhysRevLett.28.885. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  21. ^ McFarland, D. F. (1903). "Composition of Gas from a Well at Dexter, Kan". Transactions of the Kansas Academy of Science. 19: 60–62. doi:10.2307/3624173. JSTOR 3624173.
  22. ^ "Discovery of Helium in Natural Gas at the University of Kansas". National Historic Chemical Landmarks. American Chemical Society. مؤرشف من الأصل فيسبعة نوفمبر 2018. اطلع عليه بتاريخ 21 فبراير 2014.
  23. ^ Cady, H.P.; McFarland, D. F. (1906). "Helium in Natural Gas". Science. 24 (611): 344. Bibcode:1906Sci....24..344D. doi:10.1126/science.24.611.344. PMID 17772798.
  24. ^ Cady, H.P.; McFarland, D. F. (1906). "Helium in Kansas Natural Gas". Transactions of the Kansas Academy of Science. 20: 80–81. doi:10.2307/3624645. JSTOR 3624645. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  25. ^ Emme, Eugene M. comp., المحرر (1961). "Aeronautics and Astronautics Chronology, 1920–1924". Aeronautics and Astronautics: An American Chronology of Science and Technology in the Exploration of Space, 1915–1960. Washington, D.C.: NASA. صفحات 11–19. اطلع عليه بتاريخ 20 يوليو2008.
  26. ^ Hilleret, N. (1999). "Leak Detection". In S. Turner (المحرر). . Geneva, Switzerland: سيرن. صفحات 203–212. مؤرشف من الأصل (PDF) في 15 يوليو2019.
  27. ^ Achim, Weiss. "Elements of the past: Big Bang Nucleosynthesis and observation". Max Planck Institute for Gravitational Physics. مؤرشف من الأصل في 11 نوفمبر 2017. اطلع عليه بتاريخ 23 يونيو2008. ; Coc, A.; et al. (2004). "Updated Big Bang Nucleosynthesis confronted to WMAP observations and to the Abundance of Light Elements". Astrophysical Journal. 600 (2): 544. arXiv:astro-ph/0309480. Bibcode:2004ApJ...600..544C. doi:10.1086/380121. Explicit use of et al. in: |مؤلف= (مساعدة)
  28. ^ Oliver, B. M.; Bradley, James G. (1984). "Helium concentration in the Earth's lower atmosphere". Geochimica et Cosmochimica Acta. 48 (9): 1759–1767. Bibcode:1984GeCoA..48.1759O. doi:10.1016/0016-7037(84)90030-9. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  29. ^ "The Atmosphere: Introduction". JetStream – Online School for Weather. National Weather Service. 2007-08-29. مؤرشف من الأصل في 13 يناير 2008. اطلع عليه بتاريخ 12 يوليو2008.
  30. ^ Lie-Svendsen, Ø.; Rees, M. H. (1996). "Helium escape from the terrestrial atmosphere: The ion outflow mechanism". Journal of Geophysical Research. 101 (A2): 2435–2444. Bibcode:1996JGR...101.2435L. doi:10.1029/95JA02208. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  31. ^ Strobel, Nick (2007). "Nick Strobel's Astronomy Notes". مؤرشف من الأصل في 22 أغسطس 2018. اطلع عليه بتاريخ 25 سبتمبر 2007.
  32. ^ Cook, Melvine A. (1957). "Where is the Earth's Radiogenic Helium?". Nature. 179 (4552): 213. Bibcode:1957Natur.179..213C. doi:10.1038/179213a0.
  33. ^ Aldrich, L. T.; Nier, Alfred O. (1948). "The Occurrence of He3 in Natural Sources of Helium". Phys. Rev. 74 (11): 1590–1594. Bibcode:1948PhRv...74.1590A. doi:10.1103/PhysRev.74.1590. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  34. ^ Morrison, P.; Pine, J. (1955). "Radiogenic Origin of the Helium Isotopes in Rock". Annals of the New York Academy of Sciences. 62 (3): 71–92. Bibcode:1955NYASA..62...71M. doi:10.1111/j.1749-6632.1955.tb35366.x. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  35. ^ Zartman, R. E.; Wasserburg, G. J.; Reynolds, J. H. (1961). "Helium Argon and Carbon in Natural Gases". Journal of Geophysical Research. 66 (1): 277–306. Bibcode:1961JGR....66..277Z. doi:10.1029/JZ066i001p00277.
  36. ^ Broadhead, Ronald F. (2005). "Helium in New Mexico – geology distribution resource demand and exploration possibilities" (PDF). New Mexico Geology. 27 (4): 93–101. مؤرشف من الأصل (PDF) في 14 مايو2015. اطلع عليه بتاريخ 21 يوليو2008.
  37. ^ Winter, Mark (2008). "Helium: the essentials". University of Sheffield. مؤرشف من الأصل في أربعة أبريل 2019. اطلع عليه بتاريخ 14 يوليو2008.
  38. Smith, E. M.; Goodwin, T. W.; Schillinger, J. (2003). "Challenges to the Worldwide Supply of Helium in the Next Decade". Advances in Cryogenic Engineering. A (710): 119–138. doi:10.1063/1.1774674. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  39. ^ Cai, Z.; et al. (2007). (PDF). University of Cambridge. مؤرشف من الأصل (PDF) في 26 مارس 2009. Explicit use of et al. in: |author= (مساعدة)
  40. ^ Pierce, A.P., Gott, G.B., and Mytton, J.W., Uranium and Helium in the Panhandle Gas Field Texas, and Adjacent Areas,Geological Survey Professional Paper 454-G, Washington:US Government Printing Office, 1964
  41. ^ "Helium End User Statistic" (PDF). U.S. Geological Survey. مؤرشف من الأصل (PDF) في 12 مارس 2013. اطلع عليه بتاريخ 20 يوليو2008.
  42. ^ "Helium" (PDF). Mineral Commodity Summaries. U.S. Geological Survey. 2009. صفحات 74–75. مؤرشف من الأصل (PDF) فيعشرة يناير 2019.
  43. ^ Kaplan, Karen H. (June 2007). "Helium shortage hampers research and industry". Physics Today. American Institute of Physics. 60 (6): 31–32. Bibcode:2007PhT....60f..31K. doi:10.1063/1.2754594.
  44. ^ Basu, Sourish (October 2007). Yam, Philip (المحرر). "Updates: Into Thin Air". Scientific American. 297 (4). Scientific American, Inc. صفحة 18. مؤرشف من الأصل في 11 مارس 2013. اطلع عليه بتاريخ 04 أغسطس 2008.
  45. ^ Belyakov, V.P.; Durgar'yan, S. G.; Mirzoyan, B. A. (1981). "Membrane technology—A new trend in industrial gas separation". Chemical and Petroleum Engineering. 17 (1): 19–21. doi:10.1007/BF01245721. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  46. Anderson, Don L.; Foulger, G. R.; Meibom, A. (2006-09-02). "Helium Fundamentals". MantlePlumes.org. مؤرشف من الأصل في 22 أبريل 2019. اطلع عليه بتاريخ 20 يوليو2008. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  47. ^ Novick, Aaron (1947). "Half-Life of Tritium". Physical Review. 72 (10): 972–972. Bibcode:1947PhRv...72..972N. doi:10.1103/PhysRev.72.972.2.
  48. ^ Zastenker G. N. (2002). "Isotopic Composition and Abundance of Interstellar Neutral Helium Based on Direct Measurements". Astrophysics. 45 (2): 131–142. Bibcode:2002Ap.....45..131Z. doi:10.1023/A:1016057812964.
  49. ^ "Lunar Mining of Helium-3". Fusion Technology Institute of the University of Wisconsin-Madison. 2007-10-19. مؤرشف من الأصل في 27 مارس 2019. اطلع عليه بتاريخ 09 يوليو2008.
  50. ^ Slyuta, E. N.; Abdrakhimov, A. M.; Galimov, E. M. (2007). "The estimation of helium-3 probable reserves in lunar regolith" (PDF). Lunar and Planetary Science XXXVIII. مؤرشف من الأصل (PDF) فيتسعة مارس 2018. اطلع عليه بتاريخ 20 يوليو2008. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  51. ^ The Encyclopedia of the Chemical Elements. صفحة 264.
  52. ^ Dilution Refrigeration. cern.ch نسخة محفوظة 22 مارس 2020 على مسقط واي باك مشين.
  53. ^ Watkins, Thayer. "The Old Quantum Physics of Niels Bohr and the Spectrum of Helium: A Modified Version of the Bohr Model". San Jose State University. مؤرشف من الأصل في 07 يناير 2017.
  54. ^ "Solid Helium". Department of Physics University of Alberta. 2005-10-05. مؤرشف من الأصل في 31 مايو2008. اطلع عليه بتاريخ 20 يوليو2008.
  55. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  56. ^ Henshaw, D. B. (1958). "Structure of Solid Helium by Neutron Diffraction". Physical Review Letters. 109 (2): 328–330. Bibcode:1958PhRv..109..328H. doi:10.1103/PhysRev.109.328.
  57. ^ Stone, Jack A.; Stejskal, Alois (2004). "Using helium as a standard of refractive index: correcting errors in a gas refractometer". Metrologia. 41 (3): 189–197. Bibcode:2004Metro..41..189S. doi:10.1088/0026-1394/41/3/012. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  58. ^ Buhler, F.; Axford, W. I.; Chivers, H. J. A.; Martin, K. (1976). "Helium isotopes in an aurora". J. Geophys. Res. 81 (1): 111–115. Bibcode:1976JGR....81..111B. doi:10.1029/JA081i001p00111. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  59. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 6-120. ISBN 0-8493-0486-5.
  60. ^ Hohenberg, P. C.; Martin, P. C. (2000). "Microscopic Theory of Superfluid Helium". Annals of Physics. 281 (1–2): 636–705 12091211. Bibcode:2000AnPhy.281..636H. doi:10.1006/aphy.2000.6019. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  61. ^ Fairbank, H. A.; Lane, C. T. (1949). "Rollin Film Rates in Liquid Helium". Physical Review. 76 (8): 1209–1211. Bibcode:1949PhRv...76.1209F. doi:10.1103/PhysRev.76.1209. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  62. ^ Rollin, B. V.; Simon, F. (1939). "On the "film" phenomenon of liquid helium II". Physica. 6 (2): 219–230. Bibcode:1939Phy.....6..219R. doi:10.1016/S0031-8914(39)80013-1. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  63. ^ Lewars, Errol G. (2008). . Springer. صفحات 70–71. ISBN . مؤرشف من الأصل في 08 مارس 2020.
  64. ^ Weiss, Ray F. (1971). "Solubility of helium and neon in water and seawater". J. Chem. Eng. Data. 16 (2): 235–241. doi:10.1021/je60049a019.
  65. ^ Scharlin, P.; Battino, R. Silla, E.; Tuñón, I.; Pascual-Ahuir, J. L. (1998). "Solubility of gases in water: Correlation between solubility and the number of water molecules in the first solvation shell". Pure & Appl. Chem. 70 (10): 1895–1904. doi:10.1351/pac199870101895. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  66. ^ Hiby, Julius W. (1939). "Massenspektrographische Untersuchungen an Wasserstoff- und Heliumkanalstrahlen 3+H, 2-H, +HeH, +HeD, -He)". Annalen der Physik. 426 (5): 473–487. Bibcode:1939AnP...426..473H. doi:10.1002/andp.19394260506.
  67. ^ Wong, Ming Wah (2000). "Prediction of a Metastable Helium Compound: HHeF". Journal of the American Chemical Society. 122 (26): 6289–6290. doi:10.1021/ja9938175.
  68. ^ Grochala, W. (2009). "On Chemical Bonding Between Helium and Oxygen". Polish Journal of Chemistry. 83: 87–122.
  69. ^ Saunders, Martin Hugo; Jiménez-Vázquez, A.; Cross, R. James; Poreda; Robert J. (1993). "Stable Compounds of Helium and Neon: He@C60 and Ne@C60". Science. 259 (5100): 1428–1430. Bibcode:1993Sci...259.1428S. doi:10.1126/science.259.5100.1428. PMID 17801275. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  70. ^ Saunders, M.; et al. (1994). "Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70". Nature. 367 (6460): 256–258. Bibcode:1994Natur.367..256S. doi:10.1038/367256a0. Explicit use of et al. in: |مؤلف= (مساعدة)
  71. ^ Helium sell-off risks future supply, Michael Banks, Physics World, 27 January 2010. accessed February 27, 2010. نسخة محفوظة 01 نوفمبر 2017 على مسقط واي باك مشين.
  72. ^ "LHC: Facts and Figures" (PDF). CERN. مؤرشف من الأصل (PDF) في 06 يوليو2011. اطلع عليه بتاريخ 30 أبريل 2008.
  73. Considine, Glenn D., المحرر (2005). "Helium". Van Nostrand's Encyclopedia of Chemistry. Wiley-Interscience. صفحات 764–765. ISBN .
  74. ^ Hablanian, M. H. (1997). . CRC Press. صفحة 493. ISBN . مؤرشف من الأصل في 08 مارس 2020.
  75. ^ Fowler, B; Ackles, KN; G, Porlier (1985). "Effects of inert gas narcosis on behavior—a critical review". Undersea Biomedical Research Journal. 12 (4): 369–402. PMID 4082343. مؤرشف من الأصل في 27 يوليو2011. اطلع عليه بتاريخ 27 يونيو2008.
  76. ^ Thomas, J. R. (1976). "Reversal of nitrogen narcosis in rats by helium pressure". Undersea Biomed Res. 3 (3): 249–59. PMID 969027. مؤرشف من الأصل فيستة ديسمبر 2008. اطلع عليه بتاريخ 06 أغسطس 2008.
  77. ^ Hunger, Jr., W. L.; Bennett, P. B. (1974). "The causes, mechanisms and prevention of the high pressure nervous syndrome". Undersea Biomed. Res. 1 (1): 1–28. ISSN 0093-5387. OCLC 2068005. PMID 4619860. مؤرشف من الأصل في 25 ديسمبر 2010. اطلع عليه بتاريخ 07 أبريل 2008.
  78. ^ Rostain, J. C.; Gardette-Chauffour, M. C.; Lemaire, C.; Naquet, R. (1988). mixture on the HPNS up to 450 msw". Undersea Biomed. Res. 15 (4): 257–70. OCLC 2068005. PMID 3212843. مؤرشف من الأصل في 25 ديسمبر 2010. اطلع عليه بتاريخ 24 يونيو2008. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  79. ^ Butcher, Scott J.; Jones, Richard L.; Mayne, Jonathan R.; Hartley, Timothy C.; Petersen, Stewart R. (2007). "Impaired exercise ventilatory mechanics with the self-contained breathing apparatus are improved with heliox". European Journal of Applied Physiology. Netherlands: Springer. 101 (6): 659–69. doi:10.1007/s00421-007-0541-5. PMID 17701048. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  80. ^ Belcher, James R. (1999). "Working gases in thermoacoustic engines". The Journal of the Acoustical Society of America. 105 (5): 2677–2684. Bibcode:1999ASAJ..105.2677B. doi:10.1121/1.426884. PMID 10335618.
  81. ^ Makhijani, Arjun; Gurney, Kevin (1995). Mending the Ozone Hole: Science, Technology, and Policy. MIT Press. ISBN . صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  82. ^ Jakobsson, H. (1997). "Simulations of the dynamics of the Large Earth-based Solar Telescope". Astronomical & Astrophysical Transactions. 13 (1): 35–46. Bibcode:1997A&AT...13...35J. doi:10.1080/10556799708208113.
  83. ^ Engvold, O.; Dunn, R.B.; Smartt, R. N.; Livingston, W. C. (1983). "Tests of vacuum VS helium in a solar telescope". Applied Optics. 22 (1): 10–12. Bibcode:1983ApOpt..22...10E. doi:10.1364/AO.22.000010. PMID 20401118. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  84. ^ Ackerman MJ, Maitland G (1975). "Calculation of the relative speed of sound in a gas mixture". Undersea Biomed Res. 2 (4): 305–10. PMID 1226588. مؤرشف من الأصل في 27 يناير 2011. اطلع عليه بتاريخ 09 أغسطس 2008.
  85. ^ Josefson, D (2000). "Imitating Mickey Mouse can be dangerous". BMJ: British Medical Journal. 320 (7237): 732. PMC 1117755.
  86. Grassberger, Martin; Krauskopf, Astrid (2007). "Suicidal asphyxiation with helium: Report of three cases Suizid mit Helium Gas: Bericht über drei Fälle". Wiener Klinische Wochenschrift (باللغة German & English). 119 (9–10): 323–325. doi:10.1007/s00508-007-0785-4. PMID 17571238. صيانة CS1: أسماء متعددة: قائمة المؤلفون (link) صيانة CS1: لغة غير مدعومة (link)
  87. ^ Montgomery B., Hayes S. (2006-06-03). "2 found dead under deflated balloon". Tampa Bay Times. مؤرشف من الأصل في 19 نوفمبر 2017.
  88. ^ "Two students die after breathing helium". CBC. مؤرشف من الأصل في 20 نوفمبر 2015.
  89. ^ "Tributes to 'helium death' teenager from Newtownabbey". BBC Online. 19 November 2010. مؤرشف من الأصل في 11 أكتوبر 2014. اطلع عليه بتاريخ 19 نوفمبر 2010.
  90. ^ Engber, Daniel (2006-06-13). "Stay Out of That Balloon!". Slate.com. مؤرشف من الأصل في 24 يونيو2018. اطلع عليه بتاريخ 14 يوليو2008.
تاريخ النشر: 2020-06-07 03:13:01
التصنيفات: هيليوم, تجهيزات الغوص, عناصر كيميائية, غازات نبيلة, مبردات, قالب أرشيف الإنترنت بوصلات واي باك, CS1: Julian–Gregorian uncertainty, صفحات بها مراجع بالألمانية (de), صيانة CS1: أسماء متعددة: قائمة المؤلفون, أخطاء CS1: استخدام صريح للوسيط et al., صيانة CS1: لغة غير مدعومة, الصفحات التي تستخدم وصلات ISBN السحرية, قالب تصنيف كومنز بوصلة كما في ويكي بيانات, صفحات بها بيانات ويكي بيانات, صفحات تستخدم خاصية P231, صفحات تستخدم خاصية P679, صفحات تستخدم خاصية P592, صفحات تستخدم خاصية P628, صفحات تستخدم خاصية P2566, صفحات تستخدم خاصية P2115, صفحات تستخدم خاصية P662, صفحات تستخدم خاصية P652, صفحات تستخدم خاصية P715, صفحات تستخدم خاصية P683, صفحات تستخدم خاصية P3117, صفحات تستخدم خاصية P661, صفحات تستخدم خاصية P232, معرفات مركب كيميائي, صفحات تستخدم خاصية P244, صفحات تستخدم خاصية P227, صفحات تستخدم خاصية P268, بوابة تقانة/مقالات متعلقة, بوابة الفيزياء/مقالات متعلقة, بوابة العناصر الكيميائية/مقالات متعلقة, بوابة مطاعم وطعام/مقالات متعلقة, بوابة الكيمياء/مقالات متعلقة, جميع المقالات التي تستخدم شريط بوابات, مقالات جيدة, صفحات لا تقبل التصنيف المعادل

مقالات أخرى من الموسوعة

سحابة الكلمات المفتاحية، مما يبحث عنه الزوار في كشاف:

آخر الأخبار حول العالم

وزير الري: التغيرات المناخية من أهم القضايا التي يواجهها العالم

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:21:02
مستوى الصحة: 53% الأهمية: 50%

ننشر تفاصيل جلسة «الطريق من جلاسكو إلى شرم الشيخ» بمنتدى شباب العالم

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:20:50
مستوى الصحة: 48% الأهمية: 60%

تونس.. صحفيون وحقوقيون يستنكرون "محاولات الرئيس لتطويع الإعلام"

المصدر: TRTعربي - تركيا التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:17:59
مستوى الصحة: 76% الأهمية: 79%

«عبدالغفار»: مصر الأولى على مستوى أفريقيا في الأبحاث العلمية لكورونا

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:21:08
مستوى الصحة: 59% الأهمية: 58%

تطبق في يوليو المقبل.. ننشر الأسعار الجديدة لتذاكر القطارات بالصعيد 

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:20:39
مستوى الصحة: 47% الأهمية: 58%

«النقل» توافق على طلب برلماني بإنشاء محطة للقطار السريع في قنا

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:20:53
مستوى الصحة: 50% الأهمية: 51%

السومة ينقذ أهلي جدة من الخسارة أمام الفيصلي

المصدر: العربية - السعودية التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:16:44
مستوى الصحة: 82% الأهمية: 100%

حزب حماة الوطن يفتتح أمانة جديدة بمدينة العبور بالقليوبية

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:20:43
مستوى الصحة: 58% الأهمية: 68%

اليمن.. القوات الحكومية تعلن سيطرتها الكاملة على مدينة شبوة

المصدر: TRTعربي - تركيا التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:17:56
مستوى الصحة: 69% الأهمية: 70%

تعرف على رأي دار الإفتاء في زراعة قلب خنزير لـ«إنسان»

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:20:55
مستوى الصحة: 56% الأهمية: 58%

وزير الري: مصر تعتمد على مياه نهر النيل بنسبة 97%

المصدر: بوابة أخبار اليوم - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:21:15
مستوى الصحة: 58% الأهمية: 65%

أول تحرك من النيابة فى واقعة التعدى على مريض داخل مركز طبى

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:22:40
مستوى الصحة: 52% الأهمية: 56%

30 دقيقة.. المنتخب النيجيرى يتقدم بهدف على الفراعنة

المصدر: صوت الأمة - مصر التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:21:34
مستوى الصحة: 60% الأهمية: 58%

القضاء يحظر السفر على حاكم مصرف لبنان.. لهذه الأسباب

المصدر: العربية - السعودية التصنيف: سياسة
تاريخ الخبر: 2022-01-11 18:16:55
مستوى الصحة: 96% الأهمية: 100%

تحميل تطبيق المنصة العربية