مبرهنة القيمة المتوسطة

عودة للموسوعة

مبرهنة القيمة المتوسطة

For any function that is continuous on and differentiable on there exists some in the interval such that the secant joining the endpoints of the interval is parallel to the tangent at .

في الرياضييات، تقول مبرهنة القيمة المتوسطة Mean value theorem : أنه من أجل قطاع من منحن ، هناك نقطة على هذا المنحنيقد يكون فيها تدرج (ميل) المنحني مساويا للتدرج الوسطي للقطاع ككل . تستخدم هذه المبرهنة لإثبات مبرهنات تؤدي لإستنتاجات عامة (شاملة) حول التابع على مجال محدد ما بدءا من فرضيات محلية حول مشتقات النقاط لهذا المجال .

More precisely, if

وهي واحدة من أبرز النتائج في التحليل الحقيقي real analysis.

الصيغة الشكلية

The function attains the slope of the secant between and as the derivative at the point .
It is also possible that there are multiple tangents parallel to the secant.

Let

The mean value theorem is a generalization of Rolle's theorem, which assumes , so that the right-hand side above is zero.

The mean value theorem is still valid in a slightly more general setting. One only needs to assume that

exists as a finite number or equals

Note that the theorem, as stated, is false if a differentiable function is complex-valued instead of real-valued. For example, define for all real . Then

while for any real .

These formal statements are also known as Lagrange's Mean Value Theorem.


الإثبات

The expression

Define

By Rolle's theorem, since is differentiable and , there is some in for which , and it follows from the equality that,

A simple application

Assume that f is a continuous, real-valued function, defined on an arbitrary interval I of the real line. If the derivative of f at every interior point of the interval I exists and is zero, then f is constant in the interior.

Proof: Assume the derivative of f at every interior point of the interval I exists and is zero. Let (a, b) be an arbitrary open interval in I. By the mean value theorem, there exists a point c in (a,b) such that

This implies that f(a) = f(b). Thus, f is constant on the interior of I and thus is constant on I by continuity. (See below for a multivariable version of this result.)

Remarks:

  • Only continuity of f, not differentiability, is needed at the endpoints of the interval I. No hypothesis of continuity needs to be stated if I is an open interval, since the existence of a derivative at a point implies the continuity at this point. (See the section continuity and differentiability of the article derivative.)
  • The differentiability of f can be relaxed to one-sided differentiability, a proof given in the article on semi-differentiability.

مبرهنة كوشي للقيمة المتوسطة

Cauchy's mean value theorem, also known as the extended mean value theorem, is a generalization of the mean value theorem. It states: If functions f and g are both continuous on the closed interval [a, b], and differentiable on the open interval (a, b), then there exists some c ∈ (a, b), such that

المعنى الهندسي لمبرهنة كوشي

Of course, if g(a) ≠ g(b) and if g′(c) ≠ 0, this is equivalent to:

Geometrically, this means that there is some tangent to the graph of the curve

which is parallel to the line defined by the points (f(a), g(a)) and (f(b), g(b)). However Cauchy's theorem does not claim the existence of such a tangent in all cases where (f(a), g(a)) and (f(b), g(b)) are distinct points, since it might be satisfied only for some value c with f′(c) = g′(c) = 0, in other words a value for which the mentioned curve is stationary; in such points no tangent to the curve is likely to be defined at all. An example of this situation is the curve given by

which on the interval [−1, 1] goes from the point (−1, 0) to (1, 0), yet never has a horizontal tangent; however it has a stationary point (in fact a cusp) at t = 0.

Cauchy's mean value theorem can be used to prove l'Hôpital's rule. The mean value theorem is the special case of Cauchy's mean value theorem when g(t) = t.


إثبات مبرهنة كوشي للقيمة المتوسطة

The proof of Cauchy's mean value theorem is based on the same idea as the proof of the mean value theorem.

  • Suppose g(a) ≠ g(b). Define h(x) = f(x) − rg(x), where r is fixed in such a way that h(a) = h(b), namely
Since f and g are continuous on [a, b] and differentiable on (a, b), the same is true for h. All in all, h satisfies the conditions of Rolle's theorem: consequently, there is some c in (a, b) for which h′(c) = 0. Now using the definition of h we have:
Therefore:
which implies the result.
  • If g(a) = g(b), then, applying Rolle's theorem to g, it follows that there exists c in (a, b) for which g′(c) = 0. Using this choice of c, Cauchy's mean value theorem (trivially) holds.

التعميم للمحددات

Assume that and are differentiable functions on that are continuous on . Define

There exists such that .

Notice that

and if we place , we get Cauchy's mean value theorem. If we place and we get Lagrange's mean value theorem.

The proof of the generalization is quite simple: each of and are determinants with two identical rows, hence . The Rolle's theorem implies that there exists such that .

مبرهنة القيمة المتوسطة في عدة متغيرات

The mean value theorem generalizes to real functions of multiple variables. The trick is to use parametrization to create a real function of one variable, and then apply the one-variable theorem.

Let be an open convex subset of , and let be a differentiable function. Fix points , and define . Since is a differentiable function in one variable, the mean value theorem gives:

for some between 0 and 1. But since and , computing explicitly we have:

where

In particular, when the partial derivatives of

As an application of the above, we prove that is constant if is open and connected and every partial derivative of is 0. Pick some point , and let . We want to show for every . For that, let . Then E is closed and nonempty. It is open too: for every ,

for every in some neighborhood of . (Here, it is crucial that and are sufficiently close to each other.) Since is connected, we conclude .

The above arguments are made in a coordinate-free manner; hence, they generalize to the case when is a subset of a Banach space.


مبرهنة القيمة المتوسطة للدوال ذات القيم المتجهية

There is no exact analog of the mean value theorem for vector-valued functions.

In Principles of Mathematical Analysis, Rudin gives an inequality which can be applied to many of the same situations to which the mean value theorem is applicable in the one dimensional case:

Theorem. For a continuous vector-valued function differentiable on , there exists such that .

Jean Dieudonné in his classic treatise Foundations of Modern Analysis discards the mean value theorem and replaces it by mean inequality as the proof is not constructive and one cannot find the mean value and in applications one only needs mean inequality. Serge Lang in Analysis I uses the mean value theorem, in integral form, as an instant reflex but this use requires the continuity of the derivative. If one uses the Henstock–Kurzweil integral one can have the mean value theorem in integral form without the additional assumption that derivative should be continuous as every derivative is Henstock–Kurzweil integrable. The problem is roughly speaking the following: If f : URm is a differentiable function (where URn is open) and if x + th, x, hRn, t ∈ [0, 1] is the line segment in question (lying inside U), then one can apply the above parametrization procedure to each of the component functions fi (i = 1, ..., m) of f (in the above notation set y = x + h). In doing so one finds points x + tih on the line segment satisfying

But generally there will not be a single point x + t*h on the line segment satisfying

for all i simultaneously. For example, define:

Then , but and are never simultaneously zero as ranges over .

However a certain type of generalization of the mean value theorem to vector-valued functions is obtained as follows: Let f be a continuously differentiable real-valued function defined on an open interval I, and let x as well as x + h be points of I. The mean value theorem in one variable tells us that there exists some t* between 0 and 1 such that

On the other hand, we have, by the fundamental theorem of calculus followed by a change of variables,

Thus, the value f′(x + t*h) at the particular point t* has been replaced by the mean value

This last version can be generalized to vector valued functions:

Lemma 1. Let URn be open, f : URm continuously differentiable, and xU, hRn vectors such that the line segment x + th, 0 ≤ t ≤ 1 remains in U. Then we have:
where Df denotes the Jacobian matrix of f and the integral of a matrix is to be understood componentwise.

Proof. Let f1, ..., fm denote the components of f and define:

Then we have

The claim follows since Df is the matrix consisting of the components

Lemma 2. Let v : [a, b] → Rm be a continuous function defined on the interval [a, b] ⊂ R. Then we have

Proof. Let u in Rm denote the value of the integral

Now we have (using the Cauchy–Schwarz inequality):

Now cancelling the norm of u from both ends gives us the desired inequality.

Mean Value Inequality. If the norm of Df(x + th) is bounded by some constant M for t in [0, 1], then

Proof. From Lemma 1 and 2 it follows that

Mean value theorems for definite integrals

First mean value theorem for definite integrals

Geometrically: interpreting f(c) as the height of a rectangle and ba as the width, this rectangle has the same area as the region below the curve from a to b

Let f : [a, b] → R be a continuous function. Then there exists c in [a, b] such that

Since the mean value of f on [a, b] is defined as

we can interpret the conclusion as f achieves its mean value at some c in (a, b).

In general, if f : [a, b] → R is continuous and g is an integrable function that does not change sign on [a, b], then there exists c in (a, b) such that

Proof of the first mean value theorem for definite integrals

Suppose f : [a, b] → R is continuous and g is a nonnegative integrable function on [a, b]. By the extreme value theorem, there exists m and M such that for each x in [a, b], and . Since g is nonnegative,

Now let

If , we're done since

means

so for any c in (a, b),

If I ≠ 0, then

By the intermediate value theorem, f attains every value of the interval [m, M], so for some c in [a, b]

that is,

Finally, if g is negative on [a, b], then

and we still get the same result as above.

QED

Second mean value theorem for definite integrals

There are various slightly different theorems called the second mean value theorem for definite integrals. A commonly found version is as follows:

If G : [a, b] → R is a positive monotonically decreasing function and φ : [a, b] → R is an integrable function, then there exists a number x in (a, b] such that

Here stands for , the existence of which follows from the conditions. Note that it is essential that the interval (a, b] contains b. A variant not having this requirement is:

If G : [a, b] → R is a monotonic (not necessarily decreasing and positive) function and φ : [a, b] → R is an integrable function, then there exists a number x in (a, b) such that

Mean value theorem for integration fails for vector-valued functions

If the function returns a multi-dimensional vector, then the MVT for integration is not true, even if the domain of is also multi-dimensional.

For example, consider the following 2-dimensional function defined on an -dimensional cube:

Then, by symmetry it is easy to see that the mean value of over its domain is (0,0):

However, there is no point in which , because everywhere.

A probabilistic analogue of the mean value theorem

Let X and Y be non-negative random variables such that E[X] < E[Y] < ∞ and

Let g be a measurable and differentiable function such that E[g(X)], E[g(Y)] < ∞, and let its derivative g′ be measurable and Riemann-integrable on the interval [x, y] for all yx ≥ 0. Then, E[g′(Z)] is finite and

Generalization in complex analysis

As noted above, the theorem does not hold for differentiable complex-valued functions. Instead, a generalization of the theorem is stated such:

Let f : Ω → C be a holomorphic function on the open convex set Ω, and let a and b be distinct points in Ω. Then there exist points u, v on Lab (the line segment from a to b) such that

Where Re() is the Real part and Im() is the Imaginary part of a complex-valued function.

انظر أيضاً

  • Newmark-beta method
  • Mean value theorem (divided differences)
  • Racetrack principle
  • Stolarsky mean

المراجع

  1. ^ Weisstein, Eric. "Mean-Value Theorem". MathWorld. Wolfram Research. Retrieved 24 March 2011.
  2. ^ (in الإنجليزية). Krishna Prakashan Media.
  3. ^ W., Weisstein, Eric. "Extended Mean-Value Theorem". mathworld.wolfram.com (in الإنجليزية). Retrieved 2018-10-08.
  4. ^ "Cauchy's Mean Value Theorem". Math24 (in الإنجليزية). Retrieved 2018-10-08.
  5. ^ Rudin, Walter (1976). . New York: McGraw-Hill. p. 113. ISBN .
  6. ^ "Mathwords: Mean Value Theorem for Integrals". www.mathwords.com.
  7. ^ Michael Comenetz (2002). Calculus: The Elements. World Scientific. p. 159. ISBN .
  8. ^ Hobson, E. W. (1909). "On the Second Mean-Value Theorem of the Integral Calculus". Proc. London Math. Soc. S2–7 (1): 14–23. doi:10.1112/plms/s2-7.1.14. MR 1575669.
  9. ^ Di Crescenzo, A. (1999). "A Probabilistic Analogue of the Mean Value Theorem and Its Applications to Reliability Theory". J. Appl. Probab. 36 (3): 706–719. doi:10.1239/jap/1032374628. JSTOR 3215435.
  10. ^ "Complex Mean-Value Theorem". PlanetMath. PlanetMath.

وصلات خارجية

  • نطقب:SpringerEOM
  • PlanetMath: Mean-Value Theorem
  • Eric W. Weisstein, Mean value theorem at MathWorld.
  • Eric W. Weisstein, Cauchy's Mean-Value Theorem at MathWorld.
  • "Mean Value Theorem: Intuition behind the Mean Value Theorem" at the Khan Academy
تاريخ النشر: 2020-06-09 12:40:38
التصنيفات: CS1 الإنجليزية-language sources (en), All pages needing cleanup, مقالات بالمعرفة تحتاج توضيح from March 2018, Articles with invalid date parameter in template, Augustin-Louis Cauchy, Articles containing proofs, Theorems in calculus, Theorems in real analysis, مبرهنات رياضية

مقالات أخرى من الموسوعة

سحابة الكلمات المفتاحية، مما يبحث عنه الزوار في كشاف:

آخر الأخبار حول العالم

50 تشكيليًا يكشفون عن رؤيتهم الفنية لمسلسل «جزيرة غمام»

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:14
مستوى الصحة: 55% الأهمية: 68%

أحدث مسلسلات المتحدة.. انتهاء تصوير «جروب العيلة» والعرض خلال أيام

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:13
مستوى الصحة: 45% الأهمية: 60%

نائب رئيس جامعة عين شمس يتابع انتخابات اتحاد الطلاب بكلية الآداب

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:20:51
مستوى الصحة: 58% الأهمية: 63%

إضراب في الشركة الجهوية للنقل بسليانة

المصدر: جريدة المغرب - تونس التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:20:54
مستوى الصحة: 46% الأهمية: 61%

ارتفاع أسعار الوقود في تونس بنسبة 6.25% للمرة الخامسة في 2022

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:09
مستوى الصحة: 50% الأهمية: 55%

«مودة» ينفذ تدريبا للمخطوبين في المنيا

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:20:50
مستوى الصحة: 45% الأهمية: 68%

فرقة «CELLOS2» العالمية تبهر المصريين والسائحين في البحر الأحمر

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:15
مستوى الصحة: 49% الأهمية: 50%

الأمن العام يضبط 18 متهمًا برشاش جرينوف و11 بندقية آلية فى أسيوط

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:07
مستوى الصحة: 59% الأهمية: 66%

استعدادات أسوان لانطلاق الحملة القومية للتطعيم ضد شلل الأطفال

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:03
مستوى الصحة: 58% الأهمية: 63%

نائب رئيس جامعة عين شمس يتفقد لجنة انتخابات اتحاد طلاب كلية العلوم

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:20:47
مستوى الصحة: 48% الأهمية: 54%

مجمع الفنون والثقافة في جامعة حلوان.. صرح ثقافي (فيديوجراف)

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:10
مستوى الصحة: 51% الأهمية: 55%

5 مدربين جدد ينضمون لضحايا مذبحة المدربين في دوري القسم الثاني

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:20:54
مستوى الصحة: 45% الأهمية: 58%

خفايا ومرايا: لاعب الوقت المستحيل

المصدر: جريدة المغرب - تونس التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:20:51
مستوى الصحة: 48% الأهمية: 59%

ضبط عاطل حاول إدخال مخدرات لصديقه المحبوس بسجن شبين القناطر

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:07
مستوى الصحة: 60% الأهمية: 59%

«خليلنا الديمقراطية ونحيلنا الانتخابات»

المصدر: جريدة المغرب - تونس التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:20:45
مستوى الصحة: 54% الأهمية: 55%

سبب تصدر الفنانة عبلة كامل تريند جوجل.. هل تعود لرمضان 2023؟

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:21:15
مستوى الصحة: 53% الأهمية: 63%

صعود مازن هشام إلى نصف نهائي بطولة ماليزيا المفتوحة للاسكواش

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-11-24 12:20:56
مستوى الصحة: 56% الأهمية: 59%

تحميل تطبيق المنصة العربية