گرافين

ترانزستورات من الگرافين على بترة من الپلاستيك اللين. الگرافين ليس فقط أصلب مادة على وجه الأرض، بل أيضاً أكثرها ليونة. المصدر: النيويورك تايمز
الگرافين هومصفوفة مقياس مشط شمع العسل مصنوعة من ذرات الكربون.
صورة الگرافين في المجهر الالكتروني

گرافين هومادة من ذرات كربون بسمك ذرة واحدة-ورقة مستوية -bonded وهى مكتظة في شبكة بلورية تشبه مشط شمع العسل. ويمكن النظر إلى الگرافين على أنها سلك عشة الدجاج (الكيمياء) مصنوع من ذرات كربون بروابطها. الإسم يأتي من الگرافيت + -ene ; الگرافيت وهي نفسها تتكون من صحائف كثيرة من الگرافين مكدسة معاً.

وطول الرابط وبين ذرة الكربون والأخرى في الگرافين حوالي 0.142 نانومتر. الگرافين هوالعنصر الأساسي الهيكلي لبعض نظائر الكربون يتسع بما فيها گرافيت أنابيب الكربون النانوية والفولرينات. ويمكن أيضا حتى تعتبر كبيرة بلا حدود عطرى جزىء، الحالة المحدودة للعائلة هوهيدروكربونات عطرية متعددة الحلقات مسطحة تسمى الگرافينات.

نظرة مستقبلية

دفع فوز العالمان المولودان في روسيا أندريه گايم وكونستانتين نوڤوسيلوڤ ، بجائزة نوبل للفيزياء لعام 2010، بفضل عملهما الطليعي على مادة الگرافين ، التي اعتبرت المادة المدهشة للقرن الحادي والعشرين. وبالبحث عن معلومات عن هذه الماده الثوريه. ومما يثير الدهشة كميه المعلومات المتوفره عنها والافاق التى يمكن ان تفتحها تطبيقاتها فقد منحا الجائزه لانهما واشادت الاكاديمية بغيم (51 عاماً) ونوفوسيلوف (36 عاماً) لأنهما أظهرا حتى الكربون بهذه الصيغة المسطحة، يمتلك ميزات استثنائية تنبع من عالم الفيزياء الكمية المدهش . وتكرم الجائزة اختراعاً مهد الطريق امام الغرافين، وهونوع من الكربون اعتبر المادة الخارقة للجيل التالي .

ومادة الگرافين لا تتجاوز سماكتها سماكة الذرة، وهي احمل واقوى مادة متناهية الصغر في العالم، كما أنها تكاد تكون شفافة ويمكنها نقل الكهرباء والحرارة . ومن هنا وصف الغرافين بأنه المادة المرشحة لأن تحل محل اشباه الموصلات السيليكونية .

ويتسقط ان تتمكن الترانزيستورات المركبة من الگرافين ، من العمل بسرعة اكبر والتأقلم مع درجات حرارة أعلى من رقاقات الكمبيوتر المستخدمة حالياً.

وبحسب بيان صحفي صدر عن الأكاديمية اليوم ؛ تمكن العالمان ، اللذان بدآ العمل في مجال بحوث الفيزياء في روسيا، في السابق من استخلاص مادة الگرافين من بترةاعتيادية من الگرافيت ، وهي رقاقة من الكربون تعادل في سماكتها سماكة ذرة واحدة من هذا العنصر، وذلك في الوقت الذي كان يعتقد الكثيرون باستحالة ثباتية هذا البناء البلوري.


الگرافين: سحر الكربون وروعة التشكيل

يعتبر الگرافين شكل من أشكال الكربون، وهومن المواد الواعدة في مجال فهم المادة، إذ يمتلك خصائص فريدة مقارنة مع بقية المواد؛ فهويتفوق على النحاس في قدرته على توصيل الكهرباء، فيما تفوق قدرته على توصيل الحرارة المواد الأخرى. ويعد الگرافين أقل المواد سماكة وأشدها قوة، وهومادة شفافة عالية الكثافة تتألف من شبكة من ذرات الكربون ثنائية الأبعاد، لها شكل مشابه لشكل بيوت النحل المتراصة، وهويعد وحدة البناء الأساسية لمادة الجرافيت الشهيرة. واعتقد الكثير من الباحثين لفترات طويلة حتى مادة الگرافين لا يمكن ان تتواجد بشكل ثابت، لذا فهي من الناحية العملية مادة" أكاديمية"؛ إذ أنها وبسبب رقة سماكتها قد تلتف فوق بعضها، أوتتكسر، أوحتى تتلاشى قبل عزلها.


اختراق فهمي بقلم رصاص وشريط لاصق

تمكن العالمان "أندريه گايم" و"كونستانتين نوڤوسيلوڤ"، وهما من مواليد الاتحاد السوفياتي سابقاً، من استخلاص مادة الگرافين- التي كان يعتقد بأنه من المحال حتى تتواجد بشكل ثابت- من بترة من الجرافيت، وذلك عن طريق استخدام شريط لاصق عادي، حيث تمكنا في نهاية سلسلة من التجارب من استخلاص رقاقة من الكربون بسماكة تعدل سماكة ذرة واحدة. وبحسب مختصين؛ يتألف جميع ملميتر من الجرافيت من ثلاثة ملايين طبقة من الگرافين متراصة فوق بعضها البعض، وهي غير متماسكة بقوة، لذا من السهل فصلها عن بعضها، الأمر الذي يبرز عند الكتابة بقلم الرصاص، حيث يتكون رأسه من مادة الگرافيت. واستخدم العالمان خلال تجربة صممت بأسلوب فهمي قِطعاً من الأشرطة اللاصقة العادية، حيث عملوا بواسطتها على نزع رقاقات من الگرافيت بشكل متكرر، وكانا يحصلا في جميع مرة على رقاقات تتألف من طبقات متعددة من الگرافين. ومن ثم عمد الباحثان إلى ربط البتر المنفصلة من الگرافيت بسطح من مادة السيليكون المتاكسد، والمستخدم في صناعة أشباه الموصلات، ليتمكنا أخيراً من رؤية الجرافين بشكله البديع تحت عدسة المجهر الضوئي العادي، ما يعني أنهما تمكنا من فصل الجرافين والتحقق من وجوده بشكل ثابت على درجة حرارة الغرفة.

الگرافين .. تطبيقات مذهلة

يمتلك الجرافين خصائص فريدة تجعل منه مادة مثيرة للاهتمام بالنسبة للعديد من التطبيقات، فهومادة شفافة بالغة الرقة (قليلة السماكة)، وتمتاز بمرونتها العالية وقوتها الفائقة. ويمكن استعمال الجرافين لشفافيته في تصنيع الشاشات التي تعمل باللمس، لوحات الإنارة والخلايا الضوئية، كما يمكن الإفادة من هذه المادة في صناعة مجسات الغاز والإلكترونيات ذات المرونة العالية والقابلة للطي(كأجهزة المحمول والشاشات الإلكترونية)، مع إمكانية استعمالها في تصنيع بعض أجزاء الطائرات والأقمار الصناعية التي يتوجب حتى تصنع من مواد تتمتع بخفة الوزن والهجريبة القوية. كما تعد الترانزيستورات المصنعة من الجرافين بتطوير الحواسيب بشكل مذهل، لتتفوق في أدائها على الحواسيب الحالية بشكل كبير. إلى جانب ذلك تلمح الدراسات إلى حتى إمكانية استخدام الجرافين في تطوير بعض المواد مثل البلاسيتك، فإضافة الجرافين بنسبة بسيطة (واحد في المائة) إلى البلاستيك، سيزيد من مرونة الأخيرة ويحمل من قدرتها على تحمل الحرارة، ويجعلها من المواد الموصلة للكهرباء، ما يفتح المجال أمام استخدام هذا النوع من المواد المطورة في الكثير من التطبيقات المثيرة.(قدس برس)

فالسرعة الفائقة التي وصلت لها معالجات الحاسب في هذه الأيام قد تتوقف وذلك لأن السيليكون الذي تبنى عليه هذه المعالجات قارب على استنفاد قدراته الفيزيائية مما أدى بالباحثين على بدء البحث عن بديل. قام بروفسور من جامعة جورجيا تك بالتوصل لنتيجة مفادها حتى استخدام الجرافين عوضاً عن السيليكون في بناء المعالجات سيضاعف سرعة هذه المعالجات بنسبة كبيرة ويفتح آفاقاً جديدة في خلق هذه الترانزستورات. الجرافين ليس بمادة جديدة بل تستخدم في تصنيع الكثير من المواد ومنها أقلام الرصاص.

الحاسبات المبنية على السيليكون تقوم بعمليات عديدة في الثانية بدون حتى ترتفع درجة حرارتها ولكن لحد معين، أما الجرافين فإن الالكترونات تمر فيه بدون مقاومة تقريباً وترتفع درجة حرارته بنسبة قليلة جداً وذلك لأنه موصل جيد للحرارة وفقده للحرارة بسرعة يجعله مناسباً لاستخدامه في الالكترونيات. أيضاً فإن سرعة المعالجات المبنية على السيليكون ستبقى محصورة في نطاق الـ GigaHertz أما الجرافين سيمكنها من اختراق الـ TeraHertz. استخدامات الجرافين لن تكون محصورة في المعالجات والترانزستورات ولكنها ستمتد لتقنيات الاتصالات والتصوير والكشف الموجي والكشف عن الأسلحة وذلك لأن جميع هذه التطبيقات تتطلب سرعة فائقة لم يتم التوصل لها حتى الآن. يقابل الفهماء عائقاً وحيدأ في استخدام الجرافين، وهوأنه ليس بشبه موصل تماماً كما السيليكون وهذه الخاصية مهم تواجدها في الترانزستورات وإلا فإنها ستتسبب بخسارة كميات من الطاقة دون فائدة، ولكن الفهماء قاربوا على تجاوز هذه العقبة وجعله يقارب السيليكون بخصائصه في التوصيل. لقد جذب هذا الفتح الفهمي الكثير من شركات التقنية التي تترقب التطورات في الأبحاث المتعلقة بالجرافين وتدعم بعضها ومنها : إتش پي، آي بي إم وإنتل. فالباحثون بحثوا طويلا عن بديل آخر نظراً لأن الحاسبات المبنية على السيليكون تقوم بعمليات عديدة في الثانية من دون حتى ترتفع حرارتها ولكن لحد معين.

ومنذ عدة سنوات لم يتوان الفيزيائيون عن حتى يتخيلوا ويجربوا جميع ما عهدوا وما لم يعهدوا من مواد للتوصل إلى مادة تزيد من سرعة المعالجات بنسبة كبيرة وفتح آفاق جديدة في خلق الترانزستورات التي تتكون منها هذه المعالجات.

كانت نتيجة هذه الأبحاث توصل الباحثين إلى مادة الجرافين التي تستخدم في تصنيع الكثير من المواد مثل أقلام الرصاص، ومن مميزات الجرافين أنه من الناحية البنيوية الشبكية يعتبر المادة المتبلرة الوحيدة ذات البعدين في الفراغ بمعنى حتى ذرات الكربون فيها مرتبة على شكل مسدس الزوايا والأضلاع كخلية النحل تماماً. هذا الأمر يجعلهقد يكون جزيئاً مسطحاً وبسمك ذرة واحدة أي ما يعادل 0،1 نانومتر.

وكان الباحثان الأمريكيان ديڤد مرمين وهربرت واگنر توصلا في 1966 إلى حتى الگرافيت الذي تصنع منه أقلام الرصاص، يتأثر بعامل الحرارة أوالاستثارة الحرارية، أي حتى طبقة واحدة من الذرات يمكن حتى تضطرب في بنيتها الشكلية، وبالتالي فإن المادة نفسها يمكن حتى تتحول إلى سائل أومادة مائعة نظراً لأنه لا يمكن عزلها.

هذا الأمر لم يمنع الفيزيائي الهولندي ذا الأصل الروسي أندريه گايم وفريقه الفهمي من جامعة مانشستر، من حتى ينجحوا في عزل بلورة الجرافين، اللهم إلا حتى الجرافين ليس مسطحاً تماماً ويظهر عن تموجات دقيقة جداً قادرة على امتصاص طاقة الاستثارة الحرارية.

ومنذ اكتشافه لم يكف الجرافين عن إظهار خصائص جديدة غير مسبوقة، فخصائصه تبين أنه مادة شفافة وموصلة ومثالية في مجال صناعة الألواح الشمسية أوالبلورات السائلة كما حتى مقاومته الميكانيكية تبشر بأنه سيكون من المواد فائقة الصلابة، فضلاً عن ذلك فإن خواصه الإلكترونية أثارت دهشة الفهماء بالعمل لأن سرعة النقل الإلكتروني فيه مرتفعة بشكل لا يصدق أي حتى الإلكترونات تمر عبره من دون مقاومة تقريباً وترتفع درجة حرارته بنسبة قليلة جداً وذلك لأنه موصل جيد للحرارة وفقده لها سريع جداً الأمر الذي يجعله مناسباً للاستخدام في الإلكترونيات.

ويشير الباحثون إلى حتى سرعة انتنطق الإلكترونات فيه تزيد على سرعتها في السيليكون بثلاثين مرة. علاوة على ذلك فإن سرعة المعالجات المبنية على السيليكون ستبقى محصورة في نطاق الگـٍگاهرتس أما الگرافين فسيمكنها من اختراق نطاق التـِراهرتس.

في هذه الآونة تنشط المختبرات الفهمية لإنتاج الجرافين بكميات تجارية بطريقتين: الأولى منها يديرها معهد تكنولوجيا جورجيا بمدينة أتلانتا الأمريكية وتتمثل في حمل حرارة بلورة كربيد السيليكون إلى أكثر من 1000 درجة مئوية إلى حتى تتفكك وتتبخر. وينتج عن هذه العملية بقاء ذرات الكربون التي ترتبط فيما بينها بشكل تلقائي معضلة شبكة سداسية من الگرافين. وتقول كلير برجيه التي تعمل في هذا المعهد بفخر: “يبلغ عرض وريقات الجرافين التي ينتجها المختبر بضع عشرات من الميكرومتر، لكن الأهم من ذلك هوأننا استطعنا خلال هذه السنة حتى نثبت حتى نقاوة العينات التي أنتجناها كانت كافية لاستخدامها في التطبيقات الميكروإلكترونية، ما يعني حتى فترة الإنتاج على المستوى التجاري قد انطلقت بالعمل في ديسمبر 2008 في أتلانتا”.

الطريقة الثانية التي يسعى إلى التحضير لها الباحث تيري بوارومن مختبر الأبحاث التطبيقية في مجال الإلكترونيات بمدينة گرنوبل الفرنسية، تستفيد من اكتشاف الباحثين الفرنسيين أنه عندما نؤكسد الجرافيت في وسط حمضي فإن وريقاته تتفكك وتتحول إلى جرافين وبالتالي فإنه يكفي تنقية البلورة باستخدام محلول مختزل. وفي الآونة الأخيرة، تمكن فريق من الباحثين من جامعة كاليفورنيا من اكتشاف حتى مادة الهيدرازين (مركب من الآزوت والهيدروجين) قادرة على حتى تقوم بالدور الذي تقوم به الجرافين بشكل ممتاز حيث يمكن للباحثين الحصول على طبقات ذات درجة توصيل عالية وبثمن أرخص من الطريقة الأولى.

استخدامات الجرافين لن تظل محصورة في المعالجات والترانزستورات بل ستمتد إلى تقنيات أخرى كالاتصالات والتصوير والكشف الموجي والكشف عن الأسلحة والبيولوجيا للكشف عن متتاليات الحمض النووي وذلك لأن جميع هذه التطبيقات تتطلب سرعة فائقة.

ويقول الباحث أندريه گايم إذا الجرافين بمثابة الرحمة للفيزيائي لأنه من الناحية النظرية يمكنه من خلال ذرة واحدة الحوصل على مادة ثنائية الأبعاد وفائقة التوصل، ففي وريقة واحدة من الجرافين تتحرك الشحنات الكهربية كالجسيمات الكمومية النسبوية وكأنها في الحقيقة فقدت كتلتها مما يجعلها تتحرك بسرعة الضوء. ويضيف گايم حتى هذا النوع من الفيزياء الذرية كان بعيد المنال، ولذا يمكنني تشبيه الجرافين بأنه يعمل كمعجل للجسيمات، وستكون السنوات الخمس عشرة المقبلة فاصلة في موضوع التطورات التي سيشهدها عالم الكمبيوتر بشكل خاص.. كيف من الممكن أن لا وهوأشد مقاومة من الفولاذ بمائتي مرة؟ فهى مادة أشد صلابة من الألماس.


الوصف

مثال الگرافين الكامل يتألف حصرا من خلايا سداسية وأما الخلايا الخماسية والسباعية فتشكل عيوباً. إذا وجدت خلية خماسية معزولة، ثم يلتف المستوى متحولا إلى مخروط الشكل؛ وبإدخال 12 هجريباً خماسيا من شأنه حتى يخلق الفولرين. بالمثل إدراج جزىء سباعي معزول يتسبب في تكوين مسطح يشبه السرج. وبإضافة أشكال خماسية مع أشكال سباعية من شأنه حتى يسمح لطائفة واسعة من الأشكال المعقدة حتى تتم، على سبيل المثال الكربون نانوبد هومن الأنابيب الجزيئية الكربونية وحيدة الجدار ويمكن اعتبارها من أسطوانات الگرافين؛ بعضها لديها الگرافين بشكل القبعة نصف الكروية (التي تضمستة أشكال خماسية) في جميع نهاية.

المادة الأقوى في العالم: ووجد الباحثون الذين وضعوا الگرافين، أنه ذرة واحدة سميكة مع رأس حاد قوى من الألماس انه أقوى مادة جرى اختبارها على الإطلاق، الرسم التوضيحي يبين الهجريب الذري من للگرافين، وهوشبكة من ذرات الكربون والهيدروجين. فضل: Jeffrey Kysar، جامعة كلومبيا.

تعريف الگرافين رسميا في المصطلح الكيميائي في 1994نطقتIUPAC ما يلى:

طبقة كربون مفردة في الهجريب الگرافيتى يمكن إعتبارها كالعضوالنهائى في سلسلة النفتالين , الأنثراسين , الكورونين، إلخ والإسم گرافين ينبغي حتى يستخدم للدلالة على طبقة في الكربون الفردية في المركبات الگرافيتية, إستخدام "طبقة الگرافين" يعد أيضا من المصطلح العام للكربون .

في أوباك وهى خلاصة التكنولوجيا وتنص على أنه: "في السابق قد استخدمت أوصاف مثل طبقات الجرافيت وطبقات الكربون ، أوأغلفة الكربون أستخدمت لأجل المصطلح گرافين..ولايصح استخدامه لطبقة واحدة وهومصطلح يضم الجرافيت ، التي من شأنها حتى تنطوي على هيكل ثلاثي الأبعاد . وينبغي استخدام مصطلح الگرافين فقط عند مناقشة التفاعلات، والعلاقات الهيكلية أوغيرها من الخواص حول الطبقات الفردية ". وفي هذا الصدد ، يشار إلى الگرافين باعتباره متغير لانهائي (حلقة فقط من الكربون من ستة أعضاء) هيدروكاربون عطرى عديد الحلقات (PAH) وأكبر جزيء من هذا النوع يتكون من 222 ذراة بسمكعشرة حلقات من البنزين .

التواجد والانتاج

في أدبيات الفهم، وبالتدقيق في الأوساط الفهمية شار إلى حتى السطح ، كما في الگرافين والگرافيت أحادي الطبقة. لقد تفهم هذا المجتمع بشكل مكثف الگرافين الفوقي على السطوح المتنوعة فقد حررت (أكثر من 300 من الموضوعات السابقة حتى عام 2004). وفي بعض الحالات ، تقترن هذه الطبقات الگرافين على الأسطح ضعيف بما فيه الكفاية (عن طريق قوة فان دير فال ) للإبقاء على هيكل الرابطة الإليكترونية ثنائية الأبعاد , كما يحدث أيضا مع رقائق گرافيننية قابلة للتقشير فيما على سبيل المثال ، بتجارب على الگرافين وحيد الطبقة الفوقي على كربيد السيليكون , قد قدمت إستعراضا لطيف جزيئات الديراك في الجرافين عديمة الكتلة , والتي هي السمة المميزة, التى تميز هيكلها الإليكترونى .إن قوى ڤان دير فال الضعيفة , التى تعطى التماسك والإلتصاق لصفوف الگرافين عديدة الطبقات لا تؤثر دائما على الخصائص الإلكترونية لطبقات الگرافين المفردة المكدسة . وهذا هو، في حين حتى الخصائص الإلكترونية المعينة للگرافين الفوقي متعدد الطبقات مماثلة لتلك التي من الگرافين ذى الطبقة للواحدة , في حالات أخرى تتأثر الخصائصaffected لأنها لطبقات الگرافين في الجرافيت بكميات كبيرة. هذا التأثير هونظريا مفهوم جيدا ويرتبط مع التماثل في تفاعلات مابين الطبقات.

وقد بدأت طفرة الگرافين في عام 2004 ، عندما بدأ الفيزيائيين من جامعة مانشستر مؤسسومعهد تكنولوجيا الالكترونيات الدقيقة, تشيرنوجولوڤكا, روسيا, حيث وجدوا طريقة لإستخلاص الگرافين بتقشيره من الكرافيت بواسطة شريط لاصق والتعهد عليه بصريا بنقلهم إلى طبقة من ثاني أكسيد السيليكون على شريحة سليكون . ومع ذلك فإن الگرافين من المحتمل حتى يغوص في غياهب النسيان , ما عدا انه في عام 2005 مجموعة مانشستر نفسها جنبا إلى جنب مع باحثين من جامعة كولومبيا (see the History chapter below) شأنه حتى يبرهن على حتى أشباه الگرافين هي فرميونات ديراك عديمة الكتلة. ويفترض الآن أنها تنتج شظايا صغيرة من أوراق الجرافين (جنبا إلى جنب مع كميات أخرى من الحطام حدثا تآكل الكرافيت مثلما يحدث عند رسم خط بالقلم الرصاص. الگرافين الناتج بواسطة التقشير في الوقت الحاضر يعد واحدا من أغلى المواد على الأرض ،فإذا أخذنا في الإعتبار عينة يمكن وضعها في مسافة قطر شعرة رأس الإنسان فهى تتكلف أكثر من 1000 $ بتاريخ أبريل 2008 (حوالى $100,000,000/سم2.2). وقد ينخفض ثمن الكرافين بشكل كبير ، على الرغم من ذلك, وإذا تم تطوير طرق الانتاج التجاري في المستقبل. من ناحية أخرى ، فسوف يهيمن ثمن الكرافين الفوقي على كربيد السيليكون الركيزة وسوف يصبح الثمن حوالى 100 دولار/سم2 /cm2 حسب 2009. هذا تقريبا 1,000,000 مرة أرخص من الكرافين المنتج بالتقشير تقشر.

طريقة الرسم

وقد حصل الباحثون الإنكليز على بلورات كبيرة نسبيا , أولا البلورة (أولا ، عدد قليل فقط من الميكرون في الحجم ، ولكن في نهاية المطاف ، أكبر من1 مم ومرئية بالعين المجردة من قبل) ميكانيكية تقشير (تكرار التقشير) ثرى-دى.

بلورات الكرافيت ، وكان يزعم حتى دوافعهما لدراسة الخصائص الكهربائية لأفلام رقيقة من االكرافيت ، لأن بلورات ثنائي الأبعاد بحتةلم تكن معروفة من قبل ويفترض حتى إكتشافهم لمستويات منفردة للكرافيت كان يفترض أنه اتى عن طريق الصدفة البحتة .وأكدت الناحيتين النظرية والتجريبية في وقت سابق ان الهجريب ثنائي الأبعاد (2D) لا يمكن حتى يوجد في الحالة الحرة.

ويعتقد حتى التخشين المجهري الداخلى على مقياس من 1 نانومتر يمكن حتىقد يكون هاما لثبات البلورات ثنائية الأبعاد .

النتائج المتحصل عليها في العمل وقد أكدت ذلك عدة مجموعات. ليس فقط الگرافين ولكن طبقات ذرية قائمة بذاتها من الميكا ونيتريد البورون ،dichalcogenides قد تم التعبير عنها في هذه الورقة. وللحصول على مثال ما يشبه الگرافين ، انظر الصورة إلى ما أسفل.


النموالفوقي على كربيد السيليكون

طريقة أخرى هي تسخين كربيد السيليكون لدرجات الحرارة العالية (>1100 °C) كى يختزل إلى گرافين . هذه العملية تنتج حجم عينة , التى تعتمد على حجم ال SiC substrate المستخدم. وجه كربيد السيليكون المستخدمة لإنشاء الگرافين , وإنهاء السيليكون أوإنهاء الكربون تؤثر بشدة على السمك والتنقل وكثافة الناقل من الگرافين. وقد تم تحديد الكثير من الخصائص الهامة للگرافين من الگرافين المنتج بهذا الأسلوب. وعلى سبيل المثال ، electronic band-structure أو(ما يسمى هيكل مخروط ديراك) تم تصوره أول الأمر في هذه المواد . لوحظ ضعف المضادة للتوطين في هذه المادة وليس في الگرافين المنتج بكيفية التقشير التي طورت بتتبع أسلوب القلم الرصاص . وقد لوحظت ، درجات حرارة كبيرة للغاية وتنقلات مستقلة في الگرافين كربيد الفوقي. لأنها تقترب من تلك للگرافين المقشر الذى يوضع على أكسيد السيليكون لكنها ما زالت أقل بكثير من التنقلات في الگرافين التي علقت وتنتجها طريقة الرسم

يمكن حتىقد يكون نمط الگرافين بشكل النموعلى طبقة شفافة على كربيد السيليكون باستخدام معيار الالكترونيات الدقيقة الأساليب. كان اول من اقترح إمكانية إلكترونيات المتكاملة كبير على الگرافين كربيد الفوقي في 2004 من قبل الباحثين في معهد جورجيا للتكنولوجيا ، بعد شهرين فقط من اكتشاف الگرافين المعزول و خلق طريقة الرسم. (تم تطبيق براءة اختراع للإلكترونيات المعتمدة على الجرافين في عام 2003 وتم إصدارها في عام 2006). منذ ذلك الحين ، تم تحقيق تقدم مهم. في عام 2008 ، ابتكر الباحثون في MIT Lincoln Lab مئات الترانزستورات على شريحة واحدة وفي عام 2009 ، تم إنتاج الترانزستورات عالية التردد في مختبرات أبحاث هيوز على الگرافين أحادي الطبقة على كربيد السيليكون.

نموالفوقي على الركائز المعدنية

تستخدم هذه الطريقة الهجريب الذري للركيزة المعدنية لبذر نموالگرافين (نموالفوقي). لا ينتج الگرافين المزروع على روثينيوم عادةً عينة ذات سمك موحد لطبقات الگرافين ، وقد يؤثر الترابط بين طبقة الگرافين السفلية والركيزة على خصائص طبقات الكربون.أما الگرافين الذي يغرس على إيريديوم من ناحية أخرى فهوشديد الترابط ، وموحد السُمك ، ويمكن تصنيعه بدرجة عالية. كما هوالحال في الكثير من الركائز الأخرى ، فإن الگرافين على الإيريديوم مموج قليلاً. نظرًا للترتيب بعيد المدى لجيل التموجات هذه ، فإنه يصبح إنشاء نماذج مصغرة في بنية النطاق الإلكترونية (Dirac cone) مرئيًا..تم تصنيع الألواح عالية الجودة من طبقة قليلة من الگرافين تتجاوز 1 cم2 (0.001 قدم2) في المنطقة من خلال ترسيب البخار الكيميائي على أفلام نيكل رقيقة ). تم نقل هذه الأوراق بنجاح إلى ركائز مختلفة ، مما يشير على قابلية التطبيق للعديد من التطبيقات الإلكترونية.

اختزال الهيدرازين

طور الباحثون طريقة لوضع ورقة أكسيد الگرافين في محلول من هيدرازين نقي (مركب كيميائي من النيتروجين والهيدروجين) ، مما يقلل من ورقة أكسيد الگرافين إلى گرافين أحادي الطبقة.

اختزال الصوديوم من الإيثانول

وصف منشور حديث عملية لإنتاج كميات غرامات من الگرافين ، عن طريق تقليل الإيثانول بواسطة فلز الصوديوم ، يليه الانحلال الحراري لمنتج الإيثوكسيد ، والغسل بالماء لإزالة أملاح الصوديوم.

من الأنابيب النانوية

Experimental methods for the production of graphene ribbons are reported consisting of cutting open الأنابيب النانوية. في إحدى هذه الطرق ، يتم بتر الأنابيب النانوية الكربونية المتعددة الجدران في محلول عن طريق عمل برمنگنات الپوتاسيوم وحمض الكبريتيك. في طريقة أخرى ، يتم إنتاج جزيئات الگرافين نانوية بواسطة حفر البلازما من الأنابيب النانوية المدمجة جزئيًا في فيلم الپوليمر

الخصائص

البنية الذرية

تمت دراسة الهجريب الذري للگرافين المعزول أحادي الطبقة بواسطة المجهر إلكتروني الإرسال (TEM) على ألواح الگرافين المعلقة بين قضبان شبكة معدنية. وأظهرت أنماط انحياز الإلكترون الشعرية السداسية من الگرافين. كما أظهر الگرافين المعلق "تموجًا" للصفائح المسطحة ، بسعة تبلغ نحونانومتر واحد. قد تكون هذه التموجات متأصلة في الگرافين نتيجة لعدم استقرار البلورات ثنائية الأبعاد ، أوقد تكون خارجية ، ناشئة عن الأوساخ الموجودة في جميع مكان في جميع صور TEM للگرافين. تم الحصول على صور حقيقية للفضاء الذري لگرافين معزول أحادي الطبقة على ركائز ثاني أكسيد السيليكون بواسطة مجهر المسح النفقي. تتم تغطية الگرافين المعالج باستخدام تقنيات الطباعة الحجرية بواسطة بقايا مقاومة للضوء ، والتي يجب تنظيفها للحصول على صور ذات الدقة الذرية. قد تكون هذه البقايا هي "كثافات" التي يتم ملاحظتها في صور TEM ، وقد يفسر تموج الگرافين المعلق. تم تحديد تموج الگرافين على سطح ثاني أكسيد السيليكون عن طريق تحويل الگرافين إلى ثاني أكسيد السيليكون الأساسي ، وليس تأثيرًا جوهريًا.

صفائح الگرافين في الشكل الصلب (density > 1 g/cm3) عادة ما تظهر أدلة في انحياز لطبقة الگرافيت ل 0.34 نانومتر (002). هذا سليم حتى بالنسبة لبعض الهياكل النانوية الكربونية أحادية الجدار. ومع ذلك ، تم العثور على الگرافين الذي لا يحتوي على حلقات مع حلقات (hk0) فقط في لب بصلة الگرافيت presolar.تظهر دراسات مجهر إلكترون ناقل الحركة وجود أوجه قصور في عيوب صفائح الگرافين المسطحة, واقترح دورًا محتملًا في هذا الگرافين الذي لا يحتوي على أي تظليل من أجل بلورة ثنائية الأبعاد dendritic من الذوبان.

الخصائص الإلكترونية

GNR band structure for zig-zag type. Tightbinding calculations show that zigzag type is always metallic.
GNR band structure for arm-chair type. Tightbinding calculations show that armchair type can be semiconducting or metallic depending on width (chirality).

يختلف الگرافين عن معظم المواد ثلاثية الأبعاد التقليدية. الگرافين الحقيقي هوشبه فلز أوالفجوة الصفرية شبه موصلة. إذا فهم البنية الإلكترونية للگرافين هونقطة الانطلاق لإيجاد بنية شريط الگرافيت . تم إدراك مبكرًا حتى علاقة E-k خطية للطاقات المنخفضة بالقرب من الأركان الستة للمنطقة سداسية الأبعاد منطقة Brillouin ، مما يؤدي إلى صفر كتلة فعالة للإلكترونات والثقوب. بسبب هذا التشتت الخطي (أو" المخروطية") في الطاقات المنخفضة ، والإلكترونات والثقوب بالقرب من هذه النقاط الست ، اثنتان منها غير متكافئة ، تتصرفان مثل النسبية الموصوفة بواسطة معادلة ديراك للدوران 1/2 الجسيمات.وبالتالي ، تسمى الإلكترونات والثقوب ديراك fermions ، وتسمى الزوايا الستة لمنطقة Brillouin بنقاط Dirac.المعادلة التي تصف العلاقة E-k هي خطأ رياضيات (اعرض بصيغة MathML إذا أمكن (تحت التجريب): رد غير سليم ("Math extension cannot connect to Restbase.") من الخادم "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle E = \hbar v_F\sqrt{k_x^2+k_y^2 ; حيث سرعة الFermi vF ~ 106 m/s.

النقل الإلكتروني

تشير النتائج التجريبية من قياسات النقل إلى حتى الگرافين يحتوي على درجة حرارة إشارة حركية إلكترونية في درجة حرارة الغرفة ، مع وجود قيم مذكورة تزيد عن15,000 cm2V−1s−1. بالإضافة إلى ذلك ، يشير تناظر الموصلة المقاسة تجريبياً إلى حتى التنقل بين الثقوب والإلكترونات يجب حتىقد يكون متماثلًا تقريبًا. The mobility is nearly independent of temperature between 10 K and 100 K, مما يعني حتى آلية الانتثار المهيمنة هي نثر العيوب. إذا التشتت من قِبل phonon الصوتية من الگرافين يضع حدودًا داخلية على درجة حرارة الغرفة 200,000 cm2V−1s−1 في كثافة الناقل من 1012 cm−2.المقاومة اللقاءة من ورقة الگرافين ستكون10−6 Ω·cm, أقل من مقاومة الفضة ، وهي أقل مادة مقاومة معروفة في درجة حرارة الغرفة. ومع ذلك ، بالنسبة لنشاط الگرافين على ركائز ثاني أكسيد السيليكون ، فإن تشتت الإلكترونات بواسطة الفونونات الضوئية للركيزة هوتأثير أكبر في درجة حرارة الغرفة من الانتثار بواسطة فونونات الگرافين الخاصة ، ويحد من الحركة إلى 40,000 cm2 V−1s−1.

على الرغم من كثافة حاملة الصفر بالقرب من نقاط Dirac ، يعرض الگرافين الحد الأدنى للموصلية حسب ترتيب 4e2/h. أصل هذا الحد الأدنى من التوصيل لا يزال غير واضح. ومع ذلك ، تموج ورقة الگرافين أوالشوائب المؤينة في SiO2 الركيزة قد تؤدي إلى برك محلية من الناقلات التي تسمح بالتوصيل. تشير عدة نظريات إلى حتى الحد الأدنى من الموصلية يجب حتىقد يكون 4e2/πh;ومع ذلك ، فإن معظم القياسات هي من أجل 4e2/h أوأكبر وتعتمد على هجريز الشوائب.

لقد دلت التجارب الحديثة على تأثير المنشطات الكيميائية على حركة الناقل في الگرافين. من Schedin ، وآخرون. فالگرافين المخدر مع الأنواع الغازية المتنوعة (بعض المستقبلات ، بعض الجهات المانحة) ، وجدت حتى الحالة الأولية غير المخلوقة لهيكل الگرافين يمكن استردادها عن طريق تسخين الگرافين في الفراغ برفق. ذكر Schedin ، وآخرون. أنه حتى بالنسبة لهجريزات dopant الكيميائية التي تزيد عن 1012 cm−2 لا يوجد أي تغيير ملحوظ في حركة الناقل. عثر تشن وآخرون. الگرافين المخدر مع الپوتاسيوم في فراغ عالي جداً في درجة حرارة منخفضة. حتى أيونات البوتاسيوم تعمل كما هومتسقط للشوائب المشحونة في الگرافين,ويمكن حتى تقلل من التنقل 20 ضعفاً. يمكن تقليل قابلية التنقل عند تسخين الگرافين لإزالة الپوتاسيوم.

نظرًا لخاصيتها ثنائية البعد، يُعتقد حتى تجزيء الشحنة (تجزيء الإلكترونات إلى أيونات) يحدث في الگرافين. على الرغم من أنه قد يحدث بالتالي مادة مناسبة لبناء كمبيوتر الكم باستخدام الدارات الصوتية.

الخصائص البصرية

Photograph of graphene in transmitted light. This one atom thick crystal can be seen with the naked eye because it absorbs approximately 2.3% of white light, which is π times fine-structure constant.

تنتج خصائص الگرافين الإلكترونية الفريدة لا نفاذية عالية بشكل غير متسقط لأحادي الطبقة الذرية ، مع قيمة بسيطة مذهلة: حيث تمتص "πα" "٪ 2.3٪ من الضوء الأبيض ، حيث" ألفا "هي دقيقة هيكل ثابت. هذا "نتيجة للبنية الإلكترونية المنخفضة الطاقة غير المعتادة للگرافين أحادي الطبقة والذي يضم الإلكترون والثقب حزمة مخروطية تلتقيان في نقطة Dirac ... [والتي] تختلف نوعيًا عن الحزم الضخمة التربيعية الأكثر شيوعاً ". استنادًا إلى نموذج الفرقة Slonczewski-Weiss-McClure (SWMcC) من الگرافيت ، تلغي المسافة بين الذرات وقيمة القفز والتردد عندما يتم حساب التوصيل البصري باستخدام معادلات فريسنل في الحد من الأغشية الرقيقة.

تم تأكيد ذلك بشكل تجريبي ، لكن القياس ليس دقيقًا بما يكفي لتحسين التقنيات الأخرى لتحديد ثابت البنية الدقيقة.

لقد ثبت مؤخرًا حتى فجوة النطاق من الگرافين يمكن ضبطها من 0 إلى 0.25 فولت (حواليخمسة ميكرون طول الموجة) عن طريق تطبيق الجهد على الگرافين طبقة ثنائية وثنائي البوابة الترانزستور تأثير الحقل (FET) في درجة حرارة الغرفة.. كما تبين حتى الاستجابة البصرية لـ الگرافين nanoribbons يمكن ضبطها في نظام terahertz بواسطة مجال مغناطيسي مطبق

الامتصاص القابل للتشبع

تم التأكيد أيضًا على حتى هذا الامتصاص الفريد يمكن حتى يصبح مشبعًا عندما تكون شدة الإدخال البصرية أعلى من قيمة العتبة. يُطلق على هذا السلوك البصري اللاخطي الامتصاص القابل للتشبع وتسمى القيمة العتبية بطلاقة التشبع. يمكن تشبع الگرافين بسهولة تحت الإثارة القوية على المنطقة القريبة من الأشعة تحت الحمراء ، وذلك بسبب الامتصاص البصري العالمي وفجوة النطاق الصفري. هذا له أهمية بالنسبة لقفل الوضع الليزري ، حيث يمكن الحصول على نفق النطاق العريض باستخدام الگرافين كممتص قابل للإشباع. نظرًا لهذه الخاصية الخاصة ، يتمتع الگرافين بتطبيق واسع في الضوئيات فائقة السرعة.

نقل السپين

يُعتقد حتى الگرافين مادة مثالية لـ spintronics نظرًا لصغر تفاعل الدوران وقرب غياب اللحظات المغناطيسية النووية في الكربون. لقد تم مؤخرًا إظهار الحقن الكهربائي الدوراني والكشف في الگرافين حتى درجة حرارة الغرفة. وقد لوحظ طول تماسك الدوران فوق 1 ميكرون في درجة حرارة الغرفة, ولوحظ التحكم في قطبية تيار الدوران مع بوابة كهربائية في درجة حرارة منخفضة.

تأثير هال الكمومي الشاذ

تأثير هال الكمومي مناسب لمعايير القياس الدقيقة للكميات الكهربائية ، وفي عام 1985 حصل كلاوس ڤون كلايتشنگ على جائزة نوبل لاكتشافها. يتعلق التأثير باعتماد الموصلية العرضية على مجال مغناطيسي ، وهوعمودي على شريط يحمل التيار. عادة ما تسمى هذه الظاهرة ، الكمية موصلية هالσxy في عدد سليم من مضاعفات الكمية الأساسية e2/h (حيث "e" هي الشحنة الكهربائية الأولية و"h" هي ثابت پلانك) لا يمكن ملاحظتها إلا في المواد الصلبة أوSiA الصلبة النظيفة جدًا ، وفي درجات حرارة منخفضة جدًا حول -270 °C, وفي المجالات المغناطيسية عالية جدا.

على النقيض من ذلك ، فإن الگرافين ، إلى جانب قدرته العالية على الحركة وحده الأدنى من التوصيلية ، وبسبب بعض الخصائص الزائفة النسبية المراد ذكرها أدناه ، يُظهر سلوكًا مثيرًا للاهتمام بشكل خاص في وجود مجال مغناطيسي وفقط فيما يتعلق بكمية الموصلية: تأثير "هال" غير طبيعي في هال مع تسلسل المراحل "تحول" بمقدار 1/2 فيما يتعلق بالتسلسل القياسي ، ومع عامل إضافي قدره 4. إلى غير ذلك ، فإن الموصلية هال في الگرافين هي

على عكس المعادن العادية ، تُظهر المقاومة الطولية للگرافين الحد الأقصى بدلاً من الحد الأدنى للقيم الأساسية لعامل ملء Landau في قياسات Shubnikov-de Haas ، والتي تُظهر تحول طور لـ π ، المعروفة باسم فترة بيري. تنشأ فترة بيري بسبب الكتلة الحاملة الفعالة الصفرية بالقرب من نقاط ديراك. تكشف دراسة الاعتماد على درجة حرارة ذبذبات شبنيكوڤ دي هاس في الگرافين حتى الناقلين لديهم كتلة سيكلوترون غير صفرية ، على الرغم من كتلتها الفعالة الصفرية من علاقة E-k.

Nanostripes: تيارات الحافة المستقطبة الدوارة

تظهر الأنابيب النانوية من الگرافين (في اتجاه "التعرج") ، عند درجات حرارة منخفضة ، تيارات حافة معدنية مستقطبة دوارة ، والتي تقترح أيضًا تطبيقات في مجال spintronics الحديث. (في توجيه "الكرسي بذراعين" ، تسلك الحواف سلوك أنصاف النواقل.)

أكسيد الگرافين

من خلال أكسدة الگرافين ومعالجته كيميائياً ، ثم تعويمه في الماء ، حيث تشكل رقائق الگرافين ورقة واحدة وترتبط بقوة شديدة. تحتوي هذه الأوراق ، المسماة ورق أكسيد الگرافين ، على معامل الشد المقاس لـ 32 GPa.

التعديل الكيميائي

يمكن تحضير فتات الگرافين القابلة للذوبان في المختبر من خلال التعديل الكيميائي للگرافيت . أولاً ، يتم التعامل مع الگرافيت البلوري الجيري بمزيج حمضي قوي من حامض الكبريتيك وحامض النيتريك. سلسلة من المراحل التي تنطوي على أكسدة وتقشير ينتج عنها صفيحات صغيرة من الگرافين مع مجموعات كربوكسيل على حوافها. يتم تحويلها إلى مجموعات حمض الكلوريد عن طريق العلاج مع كلوريد الثيونيل ؛ بعد ذلك ، يتم تحويلها إلى الگرافين اللقاء أميد عن طريق العلاج مع أوكتاديسيلامين. المواد الناتجة (طبقات الگرافين الدائرية بسمك 5.3 أنگستروم) قابلة للذوبان في رباعي هيدروفوران ، رباعي كلوروالميثان ، وثنائي كلوروإيثان.

صورة لأكسيد الگرافين أحادي الطبقة الذي يخضع لمعاملة كيميائية عالية الحرارة ، مما يؤدي إلى طي الصفائح وفقدان وظائف الكربوكسيل ، أومن خلال معالجة كربوديميد درجة حرارة الغرفة ، ينهار إلى مجموعات تشبه النجوم.

الخصائص الحرارية

تم قياس درجة حرارة الغرفة القريبة التوصيل الحراري من الگرافين مؤخرًا (4.84±0.44) ×103 إلى (5.30±0.48) ×103 Wm−1K−1. هذه القياسات ، التي يتم إجراؤها باستخدام تقنية بصرية غير ملامسة ، تفوق تلك المقاسة للأنابيب النانوية الكربونية أوالماس. يمكن إظهار ذلك باستخدام Wiedemann-Franz law ، حتى التوصيل الحراري يسيطر عليه الفونون. ومع ذلك ، بالنسبة لشريط الگرافين المسور ، فإن انحياز البوابة المطبق الذي يتسبب في تحول Fermi energy أكبر من kBT يمكن حتى يسبب المساهمة الإلكترونية لزيادة والسيطرة على phonon مساهمة في درجات حرارة منخفضة. التوصيل الحراري الباليستيني للگرافين هوموحد الخواص.

يمكن ملاحظة إمكانات هذه الموصلية العالية من خلال النظر في الگرافيت ، وهوإصدار ثلاثي الأبعاد من الگرافين يحتوي على الموصلية الحرارية للمستوي القاعدي التي تزيد عن 1000 واط / mK (يشبه الماس). في الگرافيت ، الموصلية الحرارية (خارج المستوي) تزيد عن عامل أصغر بمقدار 100 ~ بسبب قوى الربط الضعيفة بين المستويات القاعدية وكذلك تباعدات شعريةأكبر. بالإضافة إلى ذلك ، يُظهر حتى التوصيل الحراري الباليستي للجرافين يعطي الحد الأدنى من التوصيلات الحرارية الباليستية ، لكل محيط وحدة ، وطول أنابيب الكربون النانوية.

على الرغم من طبيعته ثنائية الأبعاد ، يحتوي الگرافين على ثلاثة أوضاع phonon صوتي. لدى وضعي الالمستوي (LA ، TA) علاقة تشتت الخطية ، في حين حتى وضع الخروج من المستوى (ZA) له علاقة تشتت تربيعي. بسبب هذا ، فإن T2تساهم مساهمة الموصلية الحرارية التابعة للأنماط الخطية في درجات حرارة منخفضة من قبل T1.5 مساهمة للخروج من وضع المستوي. تعرض بعض شرائط الفونون ذات الگرافين وذات بارامترات Grüneisen سلبية. في درجات الحرارة المنخفضة (حيث لا تزال معظم الأوضاع البصرية المثارة ذات بارامترات Grüneisen الإيجابية غير موجودة ستكون المساهمة من بارمترات Grüneisen السلبية هي المسيطرة ومعامل التمدد الحراري (والذي يتناسب طرديا مع بارامترات Grüneisen) سالبة. تتوافق معاملات Grüneisen الأقل سلبية مع أدنى أوضاع ZA الصوتية المستعرضة. تزداد ترددات الفونون لمثل هذه الأنماط مع المعيار بارامتر شعرية داخل المستوي لأن الذرات الموجودة في الطبقة عند التمدد ستكون أقل حرية في التحرك في الاتجاه z. هذا مشابه لسلوك السلسلة التي يتم تمديدها سيكون لها اهتزازات ذات سعة أصغر وتردد أعلى. هذه الظاهرة ، التي تحمل اسم "تأثير الغشاء" ، تنبأ بها ليفشيتز في عام 1952.

الخصائص الميكانيكية

اعتبارًا من عام 2009 ، ظهر الگرافين كأقوى مادة تم اختبارها على الإطلاق. أظهرت القياسات حتى الگرافين لديه قوة كسر أكبر 200 مرة من الصلب.ومع ذلك ، فإن عملية فصلها عن الگرافيت ، حيث تحدث بشكل طبيعي ، ستتطلب بعض التطوير التكنولوجي قبل حتى تكون اقتصادية بما يكفي لاستخدامها في العمليات الصناعية. باستخدام مجهر القوة الذرية (AFM) ، تم قياس ثابت الزنبرك من صفائح الگرافين المعلقة. تم تعليق صفائح الگرافين ، التي تم تجميعها من قِبل قوات ڤان دير ڤالس ، على تجاويف ثاني أكسيد السيليكون حيث تم فحص طرف AFM لاختبار خواصه الميكانيكية. كان ثابت الزنبرك في حدود 1-5 ن / م وكان معامل يونگ 0.5 TPa ، والذي يختلف عن الگرافيت السائب. هذه القيم العالية تجعل من الگرافين قوي جدا وصلب. قد تؤدي هذه الخصائص الجوهرية إلى استخدام الگرافين لتطبيقات NEMS مثل مجسات الضغط ، والرنانات.

كما هوالحال في جميع المواد ، تخضع مناطق الگرافين لتقلبات حرارية وكمية في الإزاحة النسبية. على الرغم من حتى سعة التقلبات هذه مرتبطة ببنية ثلاثية الأبعاد (حتى في حدود الحجم اللانهائي) ، إلا حتى نظرية Mermin-Wagner توضح حتى سعة تقلبات الطول الموجي الطويلة يفترض أن تنمولوگاريتميًا مع مقياس بنية ثنائية الأبعاد ، وبالتالي سيكون غير محدود في هياكل حجم لا حصر له. يتأثر التشوه المحلي والسلالة المرنة بإهمال بسبب هذا الاختلاف بعيد المدى في النزوح النسبي. من المعتقد حتى بنية ثنائية الأبعاد كبيرة بما فيه الكفاية ، في حالة عدم وجود توتر جانبي مطبق ، يفترض أن تنحني وتنهار لتشكل بنية ثلاثية الأبعاد متقلبة. ولاحظ الباحثون تموجات في طبقات الگرافين المعلقة, وقد اقترح حتى التموجات تحدث بسبب التقلبات الحرارية في المادة. نتيجة لهذه التشوهات الديناميكية ، من الممكن حتىقد يكون الگرافين حقًا تعبير عن هيكل ثنائي الأبعاد.

تطبيقات مختملة

الكشف عن جزء واحد من غاز

يعد الگرافين مستشعرًا ممتازًا بفضل هيكله ثنائي الأبعاد. حقيقة حتى مجمل حجمه يتعرض لما يحيط به يجعله فعالًا للغاية في اكتشاف جزيئات الممتزة. اكتشاف جزيء غير مباشر: حيث يمتزج جزيء الغاز على سطح الگرافين ، فإن مسقط الامتزاز يقابل تغيراً محلياً في المقاومة الكهربائية. على الرغم من حدوث هذا التأثير في مواد أخرى ، فإن الگرافين متفوق بسبب التوصيلية الكهربائية العالية (حتى في حالة وجود عدد قليل من الموجات الحاملة) وانخفاض مستوى الضجيج مما يجعل هذا التغيير في المقاومة قابلاً للاكتشاف.

الشرائط النانوية من الگرافين

الشرائط النانوية الگرافين (GNRs) هي أساسا طبقات واحدة من الگرافين التي يتم بترها في نمط معين لمنحها بعض الخصائص الكهربائية. اعتمادًا على كيفية تكوين الحواف غير المرتبطة ، يمكن حتى تكون إما في شكل متعرج أوفي كرسي بذراعين. تتنبأ الحسابات المستندة إلى الربط المحكم حتى GNRs المتعرجة دائمًا ما تكون معدنية في حين حتى شكل الكراسي بذاتها يمكن حتى تكون معدنية أوشبه موصلة ، اعتمادًا على عرضها. ومع ذلك ، تُظهر الحسابات نظرية الوظيفية الكثافة الحديثة حتى أشباه الموصلات بشكل الكرسي بذراعين أشباه الموصلات مع وجود فجوة في الطاقة مع عكس عرض GNR. في الواقع ، تظهر النتائج التجريبية حتى فجوات الطاقة تزداد مع تناقص عرض GNR. ومع ذلك ، اعتبارا من فبراير 2008 ، لم تقيس أي نتائج تجريبية فجوة الطاقة في GNR وحددت بنية الحافة الدقيقة. النانوريبونات المتعرجة هي أيضا أشباه الموصلات وتقدم حواف مستقطبة دوارة. هيكلها الثنائي الأبعاد ، الموصلية الكهربية والحرارية العالية ، والضوضاء المنخفضة ، يجعل من GNRs بديلاً محتملاً للنحاس لوصلات الدوائر المتكاملة. يتم أيضًا إجراء بعض الأبحاث لإنشاء نقاط كمية عن طريق تغيير عرض GNRs في نقاط محددة على طول الشريط ، مما يخلق حجز الكم.

نظرًا لجودته الإلكترونية العالية ، اجتذب الگرافين أيضًا اهتمام التقنيين الذين يرونه كطريقة لإنشاء الترانزستورات البالستية. يُظهر الگرافين استجابة واضحة للحقول الكهربائية الخارجية العمودية ، مما يسمح للمرء ببناء FETs (ترانزستورات تأثير الحقل). في ورقة درس عام 2004, أظهرت مجموعة مانشستر FETs مع نسبة "متواضعة إلى حد ما" على التشغيل والتوقف ~ 30 في درجة حرارة الغرفة. في عام 2006 ، أعرب الباحثون جورجيا تك أنهم نجحوا في بناء مستوٍ تام من الگرافين FET مع بوابات جانبية. أظهرت أجهزتهم تغييرات بنسبة 2 ٪ في درجات الحرارة المبردة. أظهر الباحثون في أميكا و جامعة روث آخن في عام 2007 أول FET أعلى بوابة (نسبة تشغيل أقل من 2). قد تثبت جزيئات نانوية الگرافين بشكل عام قدرتها على استبدال السيليكون كأشباه موصلات في التكنولوجيا الحديثة.

أجهزة گرافينية جديدة

في لقاءة حقيقة حتى ترانزستورات الگرافين الحالية تظهر نسبة تشغيل منخفضة للغاية ، يحاول الباحثون إيجاد طرق للتحسين. في عام 2008 ، أظهر باحثون من أميكا وجامعة مانشستر تأثيرًا جديدًا على التبديل في أجهزة تأثير حقل الگرافين. يعتمد تأثير التبديل هذا على تعديل كيميائي قابل للعكس لطبقة الگرافين ويعطي نسبة تشغيل أكبر من ستة أوامر. يمكن تطبيق هذه المفاتيح القابلة للانعكاس على الذواكر غير المتطايرة.

في عام 2009 ، أظهر الباحثون في پوليتكنكودي ميلانوأربعة أنواع مختلفة من البوابات المنطقية ، جميع منها يتكون من ترانزستور گرافين واحد. في العام نفسه ، بنى الباحثون معهد ماساتشوستس للتكنولوجيا رقاقة گرافين تجريبية تُعهد باسم مُضاعِف التردد. إنه قادر على أخذ إشارة كهربائية واردة بتردد معين وإنتاج إشارة خرج متعددة من هذا التردد.على الرغم من حتى رقائق الگرافين هذه تفتح نطاقًا من التطبيقات الجديدة ، إلا حتى استخدامها العملي محدود بسبب زيادة الجهد صغير جدًا (عادةً ما تكون سعة إشارة الخرج أقل بنحو40 مرة من إشارة الدخل). علاوة على ذلك ، لم يثبت حتى أي من هذه الدارات تعمل على ترددات أعلى من 25 كيلوهرتز.

دوائر متكاملة

يتمتع الگرافين بخصائص مثالية ليكون مكونًا ممتازًا لـ دوائر متكاملة. يحتوي الگرافين على ازدياد قابلية الحركة ، بالإضافة إلى انخفاض مستوى الضجيج مما يسمح باستخدامه كقناة في FET. تكمن المشكلة في أنه يصعب إنتاج صفائح مفردة من الگرافين ، كما يصعب إنتاجها فوق طبقة أساسية مناسبة. يبحث الباحثون في طرق نقل صفائح الگرافين الفردية من مصدرها الأصلي (التقشير الميكانيكي) SiO2 / Si أوالگرافيت الحراري لسطح SiC) على ركيزة الهدف المقصود. في عام 2008 ، كان أصغر ترانزستور حتى الآن ، سماكة ذرة واحدة ، وعرضهاعشرة ذرات من الگرافين. أعربت شركة IBM في ديسمبر 2008 أنها صنعت وميزت ترانزستورات الگرافين العاملة على ترددات گيگاهيرتز. في مايو2009 ، أعرب فريق من جامعة ستانفورد وجامعة فلوريدا ومختبر لورنس ليڤرمور الوطني أنهم قاموا بإنشاء ترانزستور من النوع n ، مما يعني أنه قد تم الآن إنشاء كلا من الترانزستورات n وp مع الگرافين. في الوقت نفسه ، أظهر الباحثون في پوليتكنكودي ميلانوأول دارة مدمجة وظيفية للگرافين - مكمل عاكس يتكون من ترانزستور واحد من الگرافين p- وواحد n. ومع ذلك ، فقد عانى هذا العاكس أيضًا من انخفاض الربح الكهربائي.

أقطاب الوصل الشفاف

الموصلية الكهربائية العالية للگرافين والشفافية البصرية العالية تجعلها مرشحًا لأقطاب التوصيل الشفافة ، المطلوبة لتطبيقات مثل الشاشة التي تعمل باللمس ، شاشة الكريستال السائل ، الخلايا الكهروضوئية العضوية ، والصمام الثنائي الباعث للضوء العضوي على وجه الخصوص ، تعتبر القوة الميكانيكية والمرونة في الجرافين مفيدة مقارنة بـ أكسيد الإنديوم القصدير ، وهوهش ، ويمكن ترسيب أفلام الجرافين من محلول على مناطق واسعة.

تم إنتاج عدد كبير من طبقات الگرافين ذات الطبقات الكبيرة والمستمرة والشفافة والموصلة إلى درجة عالية من خلال ترسيب البخار الكيميائي واستخدمت كأنود للتطبيق في الأجهزة الكهروضوئية. تم عرض كفاءة تحويل طاقة محسّنة بدرجة كبيرة تصل إلى 1.71٪ ، وهي تمثل 55.2٪ من PCE لجهاز تحكم يعتمد على أكسيد القصدير.

Ultracapacitors

نظرًا لارتفاع مساحة السطح بشكل كبير إلى نسبة كتلة الگرافين ، هناك تطبيق محتمل في اللوحات الموصلة لـ ultracapacitor. يُعتقد أنه يمكن استعمال الگرافين لإنتاج المكثفات الفائقة بكثافة تخزين طاقة أكبر من المتوفرة حاليًا.

أجهزة حيوية من الگرافين

تجعل كيمياء الگرافين القابلة للتعديل ، ومساحة السطح الكبيرة ، والسماكة الذرية ، والهيكل الجزيئي من صفائح الگرافين الوظيفية في الجسم المضاد مرشحين ممتازين لأجهزة الكشف والتشخيص للثدييات والميكروبات.

طاقة الإلكترونات التي تحتوي على عدد موجي k في الگرافين ، محسوبة في تقريب-الربط الضيق. وrsp غير مأهولة. الحالات المشغولة ، الملونة في rsp الأزرق والأحمر. الأصفر والأخضر ، تلمس بعضها البعض من دون فجوة الطاقة بالضبط في ستة k-vectors المذكورة أعلاه.

أكثر تطبيقات الگرافين الحيوية طموحاً هوسلسلة الدنا بطريقة إلكترونية رخيصة وسريعة، بتكامل طبقات گرافين (بسمك 0.34 ن‌م) كأقطاب نانوية nanoelectrodes في ثقب نانوي nanopore يمكن حتى تحل واحدة من مشاكل عنق الزجاجة المتشكل من تسلسل الحمض النووي جزيء واحد على أساس nanopore.

مضاد للجراثيم

وجدت أكاديمية العلوم الصينية حتى أفرخ أكسيد الگرافين هي عالية الفعالية في اغتال الجراثيم مثل جراثيم العصيات الكولونية. هذا يعني حتى الگرافين يمكن حتىقد يكون مفيدًا في تطبيقات مثل منتجات النظافة أوالعبوة التي ستساعد في الحفاظ على الأغذية طازجة لفترة أطول.

نظرية نسبوية كاذبة

يمكن وصف الخواص الكهربائية للگرافين من خلال نموذج محكم الربط تقليدي ؛ في هذا النموذج ، تكون طاقة الإلكترونات ذات العدد الموجي هي k

خطأ رياضيات (اعرض بصيغة MathML إذا أمكن (تحت التجريب): رد غير سليم ("Math extension cannot connect to Restbase.") من الخادم "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle E=\pm\sqrt{\gamma_0^2\left(1+4\cos^2{\pi k_ya +4\cos{\pi k_ya \cdot \cos{\pi k_x\sqrt{3 a \right) ,

مع أقرب مجاور لطاقة التنقل γ0 ≈ 2.8 eV وثابت الشبكة الشعرية a ≈ 2.46 Å. تتوافق التوصيل وحزمة التكافؤ ، على التوالي ، مع العلامات المتنوعة في أعلاه علاقة التشتت ؛ تتلامس بعضهم البعض في ست نقاط ، و"القيم K". ومع ذلك ، فإن نقطتين فقط من هذه النقاط الست مستقلة ، في حين حتى البقية تعادل التماثل. في المناطق القريبة من النقاط K ، تعتمد الطاقة "خطيًا" على الموجة ، على غرار الجسيم النسبي. نظرًا لأن خلية أولية من الشبكة تحتوي على أساس ذرتين ، فإن دالة الموجة لها حتى 2-spinor فعالة. نتيجة لذلك ، في الطاقات المنخفضة ، وحتى إهمال الدوران الحقيقي ، يمكن وصف الإلكترونات بمعادلة مكافئة رسميًا للكتلة معادلة ديراك. علاوة على ذلك ، في هذه الحالة ، يقتصر هذا الوصف النسبي الزائف على chiral limit ، أي حتى تختفي كتلة الراحة M0, مما يؤدي إلى ميزات إضافية مثيرة للاهتمام:

خطأ رياضيات (اعرض بصيغة MathML إذا أمكن (تحت التجريب): رد غير سليم ("Math extension cannot connect to Restbase.") من الخادم "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle v_F\,\vec\sigma\cdot\vec\nabla \psi(\mathbf{r )\,=\,E\psi(\mathbf{r )

هنا vF ~ 106 هو Fermi speed في الگرافين الذي يحل محل سرعة الضوء في نظرية ديراك ؛ خطأ رياضيات (اعرض بصيغة MathML إذا أمكن (تحت التجريب): رد غير سليم ("Math extension cannot connect to Restbase.") من الخادم "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \vec{\sigma هوناقل مصفوفات پاولي, خطأ رياضيات (اعرض بصيغة MathML إذا أمكن (تحت التجريب): رد غير سليم ("Math extension cannot connect to Restbase.") من الخادم "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \psi(\mathbf{r ) هي مكونا دالة الموجة للإلكترونات ، و'E' 'هي طاقتها.

تاريخ الاكتشاف التجريبي

ظهر مصطلح الگرافين لأول مرة في عام 1987 من أجل وصف صفائح واحدة من الگرافيت كأحد مكونات مركب الگرافيت intercalation (GICs) ؛ من الناحية النظرية ، فإن GIC تعبير عن ملح بلوري للمادة المقربة والگرافين. تم استخدام المصطلح أيضًا في الأوصاف المبكرة لأنابيب الكربون النانوية, وكذلك الگرافين الفوقي, والهيدروكربونات العطرية متعددة الحلقات. ومع ذلك ، فإن أيا من هذه الأمثلة يشكل الگرافين المعزول ثنائي الأبعاد.

لا يمكن زراعة جزيئات أوصفائح أكبر من الگرافين (بحيث يمكن اعتبارها بلورات ثنائية الأبعاد معزولة حقيقية) حتى من حيث المبدأ. يقول منطق في فيزياء اليوم:

"تضع القوى الأساسية حواجز لا يمكن التغلب عليها فيما يظهر في طريق إنشاء [بلورات ثنائية الأبعاد] ... تحاول بلورات Nascent 2D تقليل الطاقة السطحية لها وتحولها حتما إلى واحدة من مجموعة متنوعة غنية من الهياكل ثلاثية الأبعاد المستقرة التي تحدث في السخام.

ولكن هناك طريقة للتغلب على المشكلة. التفاعلات مع الهياكل 3D استقرار البلورات 2D أثناء النمو. لذلك يمكن للمرء حتى يصنع بلورات ثنائية الأبعاد بين أوتوضع فوق الأسطح الذرية من بلورة كبيرة الحجم. في هذا الصدد ، يوجد بالعمل الگرافين داخل الگرافيت ...

يمكن للمرء بعد ذلك حتى يأمل في خداع الطبيعة واستخلاص البلورات السميكة ذات الذرة الواحدة عند درجة حرارة منخفضة بدرجة كافية بحيث تظل في حالة التبريد التي يحددها النموثلاثي الأبعاد الأصلي لدرجات الحرارة المرتفعة."

كانت الطبقات المفردة من الگرافيت سابقًا (بدءًا من السبعينيات) تغرس فوق الفوقي وفوق مواد أخرى. يتكون هذا "الگرافين الفوقي" من شبكة سداسية أحادية الذرة -bonded ذرات الكربون ، كما هوالحال في الگرافين قائم بذاته. ومع ذلك ، هناك نقل شحنة كبير من الركيزة إلى الگرافين الفوقي ، وفي بعض الحالات ، التهجين بين المدارات d لذرات الركيزة وπ المدارات من الگرافين ، مما يغير بشكل كبير الهيكل الإلكتروني للگرافين الفوقي. لوحظت أيضًا طبقات من الگرافيت بواسطة المجهر الإلكتروني للإرسال داخل المواد السائبة (انظر القسم "حدوث") ، وخاصة داخل السخام الذي تم الحصول عليه بواسطة التقشير الكيميائي. كان هناك أيضًا عدد من الجهود لصنع أفلام رقيقة جداً من الگرافيت بواسطة التقشير الميكانيكي (بدءًا من عام 1990 وتستمر حتى عام 2004) ولكن لم يتم إنتاج أي شيء أقل من 50 إلى 100 طبقة خلال هذه السنوات.

اتى التقدم الرئيسي في فهم الگرافين عندما تمكن أندري گيم ونوستيا نوڤوسليڤ في جامعة مانشستر من استخراج بلورات أحادية الذرة كثيفة (الگرافين) من الگرافيت بالجملة في عام 2004. قام باحثومانشستر بسحب طبقات الگرافين من الگرافيت ونقلوها إلى ثاني أكسيد السيليكون الرقيق على رقاقة السيليكون في عملية تسمى أحيانًا الانقسام الميكانيكي أوببساطة تقنية شريط سكوتش. عزل ثاني أكسيد السيليكون كهربائيًا الگرافين ، وكان يتفاعل بشكل ضعيف مع الگرافين ، مما يوفر طبقات جرافين محايدة تقريبًا. يمكن استعمال السيليكون الموجود أسفل ثاني أكسيد السيليكون كقطب "بوابة خلفية" لتغيير كثافة الشحن في طبقة الگرافين على مدى واسع. حصل Geim على الكثير من الجوائز عن "اكتشاف الگرافين" بما في ذلك جائزة EuroPhysics المرموقة (مع Novoselov) وجائزة Körber لعام 2009. بعض الجوائز تصف مساهماته على الأرجح بشكل أكثر دقة ، أي اكتشاف "بلورات ذرية ثنائية الأبعاد" بما في ذلك الگرافين المعزول (الگرافين داخل الهياكل الگرافيتية وعلى رأس الفلزات وكان SiC معروفًا من قبل ؛ ويعد نيتريد البورون مثالًا آخر على واحد مواد سميكة). في عامي 2008 و2009 ، رشحته وكالة رويترز (التي تدير أيضًا خدمة الويب الببليومترية للفهم) كأحد أبرز المرشحين لجائزة نوبل في الفيزياء على الرغم من حتى الجائزة في الكيمياء من الممكن أكثر ملاءمة.

أدت تقنية الانقسام الميكروميكانيكي مباشرة إلى الملاحظة الأولى لتأثير هال الكم الشاذ في الگرافين, التي قدمت دليلا مباشرا على فترة pi Berry المتسقطة نظريا ل fermions ديراك بلا كتلة في الگرافين. مجموعة أخرى لها الفضل على نطاق واسع لانطلاق أبحاث الگرافين هي فيليپ كيم ويوان بوتشانگ من جامعة كولومبيا.تم استكشاف هذه النظرية لأول مرة بواسطة Philip R Wallace في عام 1947 كنقطة انطلاق لفهم الخصائص الإلكترونية للگرافيت ثلاثي الأبعاد الأكثر تعقيدًا. أشار گوردون دبليوسيمينوف أولاً إلى معادلة ديراك بلا كتلة الناشئة and David P. DeVincenzo and Eugene J. Mele.أكد سيمينوف على حدوث في مجال مغناطيسي لمستوى لانداوالإلكتروني بدقة عند نقطة ديراك. هذا المستوى هوالمسؤول عن تأثير العدد السليم الشاذ لأثر هال.في وقت لاحق ، لوحظ أيضا طبقات الگرافين المفردة مباشرة عن طريق المجهر الإلكتروني.

في الآونة الأخيرة ، أظهرت عينات الگرافين المحضرة على أفلام النيكل ، وعلى الوجه السيليكوني لكربيد السيليكون ، تأثير هال الكم الشاذ مباشرة في القياسات الكهربائية.تُظهر الطبقات الگرافيتية على الوجه الكربوني لكربيد السيليكون طيفًا ديراكًا واضحًا في تجارب التصوير الضوئي التي تم حلها من زاوية ، ويلاحظ تأثير هال الكمومي الشاذ في تجارب الرنين السيكلوترون والثقب. ومن المفارقات أنه على الرغم من وجود الگرافين على النيكل وكربيد السيليكون على حد سواء في المختبر لعقود من الزمن ، فقد تم تقشير الگرافين ميكانيكيا على ثاني أكسيد السيليكون الذي قدم أول مرشد على طبيعة ديراك الإلكترون في الإلكترونات في الگرافين.

مرئيات

گرافين

انظر أيضاً

  • Aromaticity
  • Exfoliated graphite nano-platelets
  • Fullerenes
  • Polycyclic aromatic hydrocarbons
  • Carbon nanotubes
  • Graphene nanoribbons
  • Graphene Oxide Paper
  • Graphite
  • List of software for nanostructures modeling

الهامش

  1. ^ NICK BILTON (2014-04-13). "Bend It, Charge It, Dunk It: Graphene, the Material of Tomorrow". النيويورك تايمز.
  2. ^ Boehm, H.P.; Setton, R. and Stumpp, E. (1994). "Nomenclature and terminology of graphite intercalation compounds". Pure and Applied Chemistry. 66: 1893-1901. doi:10.1351/pac199466091893.CS1 maint: multiple names: authors list (link)
  3. ^ Simpson, C. D.; et al. (2002). "Synthesis of a Giant 222 Carbon Graphite Sheet". Chemistry — A European Journal. 6: 1424. doi:10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z. Explicit use of et al. in: |author= (help)
  4. ^ Gall,N.R. ; Rut’kov, E.V.; Tontegode, A.Y. (1997). "Two Dimensional Graphite Films on Metals and Their Intercalation". International Journal of Modern Physics B. 11: 1865-1911. doi:10.1142/S0217979297000976.CS1 maint: multiple names: authors list (link)
  5. ^ Gall,N.R. ; Rut’kov, E.V.; Tontegode, A.Y. (1995). "Influence of surface carbon on the formation of silicon-refractory metal interfaces". Thin Solid Films. 266: 229-233. doi:10.1016/0040-6090(95)06572-5.CS1 maint: multiple names: authors list (link)
  6. ^ Novoselov, K. S.; et al. (2004). "Electric Field Effect in Atomically Thin Carbon Films" (PDF). Science. 306: 666. doi:10.1126/science.1102896. Explicit use of et al. in: |author= (help)
  7. ^ Ohta, T.; et al. (2007). "Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy". Physical Review Letters. 98: 206802. doi:10.1103/PhysRevLett.98.206802. Explicit use of et al. in: |author= (help)
  8. ^ Bostwick, A.; et al. (2007). "Symmetry breaking in few layer graphene films". New Journal of Physics. 9: 385. doi:10.1088/1367-2630/9/10/385. Explicit use of et al. in: |author= (help)
  9. ^ Hass, J.; et al. (2008). "Why multilayer graphene on 4H-SiC(000(1)over-bar) behaves like a single sheet of graphene". Physical Review Letters. 100: 125504. doi:10.1103/PhysRevLett.100.125504. Explicit use of et al. in: |author= (help)
  10. ^ "Carbon Wonderland". Scientific American. April 2008. Retrieved 2009-05-05. .. bits of graphene are undoubtedly present in every pencil mark
  11. ^ Meyer, J.; et al. (2007). "The structure of suspended graphene sheets" (PDF). Nature. 446 (7131): 60-63. doi:10.1038/nature05545. PMID 17330039. Explicit use of et al. in: |author= (help)
  12. ^ Novoselov, K.S.; et al. (2005). "Two-dimensional atomic crystals" (free download pdf). PNAS. 102 (30): 10451. doi:10.1073/pnas.0502848102. Explicit use of et al. in: |author= (help)
  13. ^ Sutter, P. (2009). "Epitaxial graphene: How silicon leaves the scene". Nature Materials. 8 (3): 171. doi:nmat2392 Check |doi= value (help). PMID 19229263.
  14. ^ Zhou, S.Y.; et al. (2006). "First direct observation of Dirac fermions in graphite". Nature Physics. 2: 595–599. doi:10.1038/nphys393. Explicit use of et al. in: |author= (help)
  15. ^ Morozov, S.V.; et al. (2006). "Strong Suppression of Weak Localization in Graphene". Physical Review Letters. 97: 016801. doi:10.1103/PhysRevLett.97.016801. Explicit use of et al. in: |author= (help)
  16. ^ Berger, C.; et al. (2004). "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics". Journal of Physical Chemistry B. 108: 19912–19916. doi:10.1021/jp040650f. Explicit use of et al. in: |author= (help)
  17. ^ Kedzierski, J.; et al. (2008). "Epitaxial Graphene Transistors on SiC Substrates". IEEE Transactions on Electron Devices. 55: 2078–2085. doi:10.1109/TED.2008.926593. Explicit use of et al. in: |author= (help)
  18. ^ Moon, J.S.; et al. (2009). "Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates". IEEE Electron Device Letters. 30: 650–652. doi:10.1109/LED.2009.2020699. Explicit use of et al. in: |author= (help)
  19. ^ "A smarter way to grow graphene". PhysOrg.com. May 2008.
  20. ^ Pletikosić, I.; et al. (2009). "Dirac Cones and Minigaps for Graphene on Ir(111)". Physical Review Letters. 102: 056808. doi:10.1103/PhysRevLett.102.056808. Explicit use of et al. in: |author= (help)
  21. ^ Kim, Kuen Soo (2009). "Large-scale pattern growth of graphene films for stretchable transparent electrodes". Nature. 457 (7230): 706. doi:10.1038/nature07719. PMID 19145232. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  22. ^ "Researchers discover method for mass production of nanomaterial graphene". PhysOrg.com. Nov 2008.
  23. ^ Choucair, M. (2008). "Gram-scale production of graphene based on solvothermal synthesis and sonication". Nature Nanotechnology. 4 (1): 30–3. doi:10.1038/nnano.2008.365. PMID 19119279.
  24. ^ Brumfiel, G. (2009). "Nanotubes cut to ribbons New techniques open up carbon tubes to create ribbons". Nature. doi:10.1038/news.2009.367.
  25. ^ Kosynkin, D. V.; et al. (2009). "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". Nature. 458 (7240): 872. doi:10.1038/nature07872. PMID 19370030. Explicit use of et al. in: |author= (help)
  26. ^ Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov & Hongjie Dai (2009). "Narrow graphene nanoribbons from carbon nanotubes". Nature. 458 (7240): 877. doi:10.1038/nature07919. PMID 19370031.CS1 maint: multiple names: authors list (link)
  27. ^ Carlsson, J. M. (2007). "Graphene: Buckle or break". Nature Materials. 6 (11): 801. doi:10.1038/nmat2051. PMID 17972931.
  28. ^ Fasolino, A., Los, J. H., & Katsnelson, M. I. (2007). "Intrinsic ripples in graphene". Nature Materials. 6 (11): 858. doi:10.1038/nmat2011. PMID 17891144.CS1 maint: multiple names: authors list (link)
  29. ^ Geim, A. K. and Novoselov, K. S. (2007). "The rise of graphene" (PDF). Nature Materials. 6 (3): 183-191. doi:10.1038/nmat1849. PMID 17330084.CS1 maint: multiple names: authors list (link)
  30. ^ Ishigami, Masa (2007). "Atomic Structure of Graphene on SiO2". Nano Lett. 7 (6): 1643–1648. doi:10.1021/nl070613a. PMID 17497819. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  31. ^ Stolyarova, Elena (2007). "High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface". Proceedings of the National Academy of Sciences. 104 (22): 9209–9212. doi:10.1073/pnas.0703337104. PMC 1874226. PMID 17517635. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  32. ^ Kasuya, D.; Yudasaka, M.; Takahashi, K.; Kokai, F. ; Iijima, S. (2002). "Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism". J. Phys. Chem. B. 106: 4947. doi:10.1021/jp020387n.CS1 maint: multiple names: authors list (link)
  33. ^ Bernatowicz, T. J.; et al. (1996). "Constraints on stellar grain formation from presolar graphite in the Murchison meteorite". Astrophysical Journal. 472: 760-782. doi:10.1086/178105. Explicit use of et al. in: |author= (help)
  34. ^ Fraundorf, P. and Wackenhut, M. (2002). "The core structure of presolar graphite onions". Astrophysical Journal Letters. 578: L153-156 (astro-ph/0110585 arxiv1,cond-mat/0606093 arxiv2). doi:10.1086/344633.CS1 maint: multiple names: authors list (link)
  35. ^ Wallace, P. R. (1947). "The Band Theory of Graphite". Physical Review. 71: 622. doi:10.1103/PhysRev.71.622.
  36. ^ Charlier, J.-C.; Eklund, P.C.; Zhu, J. and Ferrari, A.C. (2008). "Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes". from Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Ed. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus. Berlin/Heidelberg: Springer-Verlag.CS1 maint: multiple names: authors list (link)
  37. ^ Semenoff, G. W. (1984). "Condensed-Matter Simulation of a Three-Dimensional Anomaly". Physical Review Letters. 53: 5449. doi:10.1103/PhysRevLett.53.2449.
  38. ^ Avouris, P., Chen, Z., and Perebeinos, V. (2007). "Carbon-based electronics". Nature Nanotechnology. 2 (10): 605. doi:10.1038/nnano.2007.300. PMID 18654384.CS1 maint: multiple names: authors list (link)
  39. ^ Novoselov, K. S.; et al. (2005). "Two-dimensional gas of massless Dirac fermions in graphene". Nature. 438 (7065): 197-200. doi:10.1038/nature04233. PMID 16281030. Explicit use of et al. in: |author= (help)
  40. ^ Morozov, S.V.; et al. (2008). "Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer". Phys. Rev. Lett. 100: 016602. doi:10.1103/PhysRevLett.100.016602. Explicit use of et al. in: |author= (help)
  41. ^ Chen, J. H.; et al. (2008). "Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2". Nature Nanotechnology. 3 (4): 206. doi:10.1038/nnano.2008.58. PMID 18654504. Explicit use of et al. in: |author= (help)
  42. ^ Akturk, A. and Goldsman, N. (2008). "Electron transport and full-band electron-phonon interactions in graphene". Journal of Applied Physics. 103: 053702. doi:10.1063/1.2890147.CS1 maint: multiple names: authors list (link)
  43. ^ Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene
  44. ^ Chen, J. H.; et al. (2008). "Charged Impurity Scattering in Graphene". Nature Physics. 4: 377 - 381. doi:10.1038/nphys935. Explicit use of et al. in: |author= (help)
  45. ^ Schedin, F.; et al. (2007). "Detection of individual gas molecules adsorbed on graphene". Nature Mater. 6 (9): 652-655. doi:10.1038/nmat1967. PMID 17660825. Explicit use of et al. in: |author= (help)
  46. ^ Adam, S.; et al. (2007). "A self-consistent theory for graphene transport" (free-download pdf). Proc. Nat. Acad. Sci. USA. 104 (47): 18392 (arxiv). doi:10.1073/pnas.0704772104. PMC 2141788. PMID 18003926. Explicit use of et al. in: |author= (help)
  47. ^ Jiannis K. Pachos (2009). "Manifestations of topological effects in graphene" (free-download pdf). Contemporary Physics. 50: 375. doi:10.1080/00107510802650507.
  48. ^ Fractionalization of charge and statistics in graphene and related structures, M. Franz, University of British Columbia, January 5, 2008
  49. ^ Kuzmenko, A. B.; van Heumen, E.; Carbone, F.; van der Marel, D. (2008). "Universal infrared conductance of graphite". Phys Rev Lett. 100: 117401. doi:10.1103/PhysRevLett.100.117401.
  50. ^ Nair, R. R.; et al. (2008). "Fine Structure Constant Defines Visual Transparency of Graphene" (PDF). Science. 320 (5881): 1308. doi:10.1126/science.1156965. PMID 18388259. Explicit use of et al. in: |author= (help) [1]
  51. ^ "Graphene Gazing Gives Glimpse Of Foundations Of Universe". ScienceDaily. 2008-04-04. Retrieved 2008-04-06.
  52. ^ Zhang, Y.; et al. (11 June 2009). "Direct observation of a widely tunable bandgap in bilayer graphene". Nature. 459 (7248): 820-823. doi:10.1038/nature08105. PMID 19516337. Explicit use of et al. in: |author= (help)
  53. ^ Junfeng Liu, A. R. Wright, Chao Zhang, and Zhongshui Ma (29 July 2008). "Strong terahertz conductance of graphene nanoribbons under a magnetic field". Appl Phys Lett. 93: 041106-041110. doi:10.1063/1.2964093.CS1 maint: multiple names: authors list (link)
  54. ^ Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen, Kian Ping Loh,and Ding Yuan Tang, Advanced Functional Materials,"Atomic layer graphene as saturable absorber for ultrafast pulsed lasers "http://www3.ntu.edu.sg/home2006/zhan0174/AFM.pdf
  55. ^ Zhang, H.; et al. "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene" (free download pdf). Optics Express. 17: P17630. Explicit use of et al. in: |author= (help)
  56. ^ Zhang, H.; et al. "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker" (PDF). Applied Physics Letters. 95: P141103. Explicit use of et al. in: |author= (help)
  57. ^ Tombros, Nikolaos (2007). "Electronic spin transport and spin precession in single graphene layers at room temperature". Nature (PDF)|format= requires |url= (help). 448 (7153): 571–575. doi:10.1038/nature06037. PMID 17632544. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  58. ^ Cho, Sungjae (2007). "Gate-tunable Graphene Spin Valve". Applied Physics Letters. 91: 123105. doi:10.1063/1.2784934. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  59. ^ Ohishi, Megumi (2007). "Spin Injection into a Graphene Thin Film at Room Temperature". Jpn J Appl Phys. 46: L605–L607. doi:10.1143/JJAP.46.L605. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  60. ^ Gusynin, V. P. and Sharapov, S. G. (2005). "Unconventional Integer Quantum Hall Effect in Graphene". Physical Review Letters. 95: 146801. doi:10.1103/PhysRevLett.95.146801.CS1 maint: multiple names: authors list (link)
  61. ^ Zhang, Y., Tan, Y. W., Stormer, H. L., and Kim, P. (2005). "Experimental observation of the quantum Hall effect and Berry's phase in graphene". Nature. 438 (7065): 201-204. doi:10.1038/nature04235. PMID 16281031.CS1 maint: multiple names: authors list (link)
  62. ^ A Castro Neto; et al. (2009). "The electronic properties of graphene" (PDF). Rev Mod Phys. 81: 109. Explicit use of et al. in: |author= (help)
  63. ^ "Graphene Oxide Paper". Northwestern University. Retrieved 2009-05-05.
  64. ^ Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon, and Robert C. Haddon (2006). "Solution Properties of Graphite and Graphene". J. Am. Chem. Soc. 128 (24): 7720–7721. doi:10.1021/ja060680r. PMID 16771469.CS1 maint: multiple names: authors list (link)
  65. ^ Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrahn, D., Miao, F., and Lau, C.N. (2008). "Superior Thermal Conductivity of Single-Layer Graphene". Nano Letters ASAP. 8 (3): 902–7. doi:10.1021/nl0731872. PMID 18284217.CS1 maint: multiple names: authors list (link)
  66. ^ Saito, K., Nakamura, J., and Natori, A. (2007). "Ballistic thermal conductance of a graphene sheet". Physical Review B. 76: 115409. doi:10.1103/PhysRevB.76.115409.CS1 maint: multiple names: authors list (link)
  67. ^ Delhaes, P. (2001). . CRC Press. ISBN .
  68. ^ Mingo N., Broido, D.A. (2005). "Carbon Nanotube Ballistic Thermal Conductance and Its Limits". Physical Review Letters. 95: 096105. doi:10.1103/PhysRevLett.95.096105.CS1 maint: multiple names: authors list (link)
  69. ^ Mounet, N. and Marzari, N. (2005). "First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives". Physical Review B. 71: 205214. doi:10.1103/PhysRevB.71.205214.CS1 maint: multiple names: authors list (link)
  70. ^ Lifshitz, I.M. (1952). Journal of Experimental and Theoretical Physics (in Russian). 22: 475. Missing or empty |title= (help)
  71. ^ Lee, C.; et al. (2008). "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene". Science. 321 (5887): 385. doi:10.1126/science.1157996. PMID 18635798. Lay summary. Explicit use of et al. in: |author= (help)
  72. ^ Sanderson, Bill (2008-08-25). "Toughest Stuff Known to Man : Discovery Opens Door to Space Elevator". nypost.com. Retrieved 2008-10-09.
  73. ^ Frank, I. W., Tanenbaum, D. M., Van Der Zande, A.M., and McEuen, P. L. (2007). "Mechanical properties of suspended graphene sheets" (free download pdf). J. Vac. Sci. Technol. B. 25: 2558-2561. doi:10.1116/1.2789446.CS1 maint: multiple names: authors list (link)
  74. ^ Barone, V., Hod, O., and Scuseria, G. E. (2006). "Electronic Structure and Stability of Semiconducting Graphene Nanoribbons". Nano Lett. 6 (12): 2748. doi:10.1021/nl0617033. PMID 17163699.CS1 maint: multiple names: authors list (link)
  75. ^ Han., M.Y., Özyilmaz, B., Zhang, Y., and Kim, P. (2007). "Energy Band-Gap Engineering of Graphene Nanoribbons". Phys. Rev. Lett. 98: 206805. doi:10.1103/PhysRevLett.98.206805.CS1 maint: multiple names: authors list (link)
  76. ^ Wang, Z. F., Shi, Q. W., Li, Q., Wang, X., Hou, J. G., Zheng, H.; et al. (2007). "Z-shaped graphene nanoribbon quantum dot device". Applied Physics Letters. 91: 053109. doi:10.1063/1.2761266. Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  77. ^ Carbon-Based Electronics: Researchers Develop Foundation for Circuitry and Devices Based on Graphite March 14, 2006
  78. ^ Lemme, M. C. et al. (2007)). "A graphene field-effect device". IEEE Electron Device Letters. 28: 282. doi:10.1109/LED.2007.891668. Check date values in: |year= (help)
  79. ^ Bullis, K. (2008-01-28). "Graphene Transistors". Cambridge: MIT Technology Review, Inc. Retrieved 2008-02-18.
  80. ^ Echtermeyer, Tim. J. et al. (2008). "Nonvolatile Switching in Graphene Field-Effect Devices". IEEE Electron Device Letters. 29: 952. doi:10.1109/LED.2008.2001179.
  81. ^ Sordan, R.; Traversi, F.; Russo, V. (2009). "Logic gates with a single graphene transistor". Appl. Phys. Lett. 94: 073305. doi:10.1063/1.3079663.CS1 maint: multiple names: authors list (link)
  82. ^ Wang, H.; Nezich, D.; Kong, J.; Palacios, T. (2009). "Graphene Frequency Multipliers". IEEE Electr. Device. L. 30: 547. doi:10.1109/LED.2009.2016443. Lay summary. CS1 maint: multiple names: authors list (link)
  83. ^ Chen, J., Ishigami, M., Jang, C., Hines, D. R., Fuhrer, M. S., and Williams, E. D. (2007). "Printed graphene circuits". Advanced Materials. 19: 3623-3627. doi:10.1002/adma.200701059.CS1 maint: multiple names: authors list (link)
  84. ^ Ponomarenko, L. A.; et al. (2008). "Chaotic Dirac Billiard in Graphene Quantum Dots". Science. 320 (5874): 356. doi:10.1126/science.1154663. PMID 18420930. Lay summary. Explicit use of et al. in: |author= (help)
  85. ^ "Graphene transistors clocked at 26 GHz Arxiv article". Arxivblog.com. 2008-12-11. Retrieved 2009-08-15.
  86. ^ Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H. (2009). "N-Doping of Graphene Through Electrothermal Reactions with Ammonia". Science. 324: 768. doi:10.1126/science.1170335. Lay summary. CS1 maint: multiple names: authors list (link)
  87. ^ Traversi, F.; Russo, V.; Sordan, R. (2009). "Integrated complementary graphene inverter". Appl. Phys. Lett. 94: 223312. doi:10.1063/1.3148342. Lay summary. CS1 maint: multiple names: authors list (link)
  88. ^ Wang, X. (2007). "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells". Nano Letters. 8 (1): 323. doi:10.1021/nl072838r. PMID 18069877. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  89. ^ Eda G, Fanchini G, Chhowalla M (2008). "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material". Nat Nanotechnol. 3 (5): 270–4. doi:10.1038/nnano.2008.83. PMID 18654522.CS1 maint: multiple names: authors list (link)
  90. ^ Wang, Yu; et al. (2009). "Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices". Applied Physics Letters. 95: 063302. doi:10.1063/1.3204698. Explicit use of et al. in: |author= (help)
  91. ^ Stoller, Meryl D. (2008). "Graphene-Based Ultracapacitors" (free download pdf). Nano Lett. 8 (10): 3498. doi:10.1021/nl802558y. PMID 18788793. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  92. ^ Mohanty, Nihar (2008). "Graphene-based Single-Bacterium Resolution Biodevice and DNA-Transistor— Interfacing Graphene-Derivatives with Nano and Micro Scale Biocomponents". Nano Letters. 8: 4469–76. doi:10.1021/nl802412n. PMID 18983201. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  93. ^ Xu, M. S. Xu (2009). "Perspectives and Challenges of Emerging Single-Molecule DNA Sequencing Technologies". Small. 5 (23): 2638–49. doi:10.1002/smll.200900976. PMID 19904762. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  94. ^ Computer supermaterial could stop your shoes smelling 01 August 2010
  95. ^ Mouras, S.; et al. (1987). "Synthesis of first stage graphite intercalation compounds with fluorides". Revue de Chimie Minerale. 24: 572. Explicit use of et al. in: |author= (help)
  96. ^ Saito, R.; et al. (1992). "Electronic structure of graphene tubules based on C60". Phys. Rev. B. 46: 1804. doi:10.1103/PhysRevB.46.1804. Explicit use of et al. in: |author= (help)
  97. ^ Forbeaux, I.; et al. (1998). "Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure". Phys. Rev. B. 58: 16396. doi:10.1103/PhysRevB.58.16396. Explicit use of et al. in: |author= (help)
  98. ^ Wang, S.; et al. (2000). "A new carbonaceous material with large capacity and high efficiency for rechargeable Li-ion batteries". Journal of the Electrochemical Society. 147: 2498. doi:10.1149/1.1393559. Explicit use of et al. in: |author= (help)
  99. ^ Geim, A. K. & MacDonald, A. H. (2007). "Graphene: Exploring carbon flatland" (PDF). Physics Today. 60: 35-41. doi:10.1063/1.2774096.CS1 maint: multiple names: authors list (link)
  100. ^ Oshima, C. and Nagashima, A. (1997). "Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces". J. Phys.: Condens. Matter. 9: 1. doi:10.1088/0953-8984/9/1/004.CS1 maint: multiple names: authors list (link)
  101. ^ Nobel glory for graphene http://science.thomsonreuters.com/press/2008/8481910/
  102. ^ DiVincenzo, D. P. and Mele, E. J. (1984). "Self-Consistent Effective Mass Theory for Intralayer Screening in Graphite Intercalation Compounds". Physical Review B. 295: 1685. doi:10.1103/PhysRevB.29.1685.CS1 maint: multiple names: authors list (link)
  103. ^ Johannes Jobst, Daniel Waldmann, Florian Speck, Roland Hirner, Duncan K. Maude, Thomas Seyller, Heiko B. Weber. "How Graphene-like is Epitaxial Graphene? Quantum Oscillations and Quantum Hall Effect". ArXiv.org.CS1 maint: multiple names: authors list (link)
  104. ^ T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, P.D. Ye. "Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001)". ArXiv.org.CS1 maint: multiple names: authors list (link)
  105. ^ Michael S. Fuhrer (2009). "A physicist peels back the layers of excitement about graphene". Nature. 459 (7250): 1037. doi:10.1038/4591037e. PMID 19553953.

وصلات خارجية

  • Manchester's Revolutionary 2D Material at The University of Manchester
  • Graphene at The Periodic Table of Videos (University of Nottingham)
  • Peres, N M R; Ribeiro, R M (2009). "Focus on Graphene". New Journal of Physics. 11 (9): 095002. Bibcode:2009NJPh...11i5002P. doi:10.1088/1367-2630/11/9/095002.
  • Graphene: Patent surge reveals global race
  • 'Engineering Controls for Nano-scale Graphene Platelets During Manufacturing and Handling Processes' (PDF)
  • Band structure of graphene (PDF).
تاريخ النشر: 2020-06-09 02:08:05
التصنيفات: CS1 maint: multiple names: authors list, CS1 errors: explicit use of et al., CS1 errors: DOI, Pages with citations using unsupported parameters, Pages using citations with format and no URL, Pages with citations lacking titles, CS1 errors: deprecated parameters, CS1 errors: dates, مركبات عطرية, تكنولوجيات بازغة, مواد نانوية, صيغ الكربون, نماذج عنقودية كمومية, أطوار الكم, أشباه موصلات المجموعة الرابعة, مواد فائقة الصلابة, گرافين, أحادية الطبقة, اختراعات القرن 21, صفحات بها أخطاء رياضيات, الصفحات بأخطاء عرض رياضيات

مقالات أخرى من الموسوعة

سحابة الكلمات المفتاحية، مما يبحث عنه الزوار في كشاف:

آخر الأخبار حول العالم

انخفاض أسعار النفط لليوم الثاني على التوالي

المصدر: RT Arabic - روسيا التصنيف: سياسة
تاريخ الخبر: 2024-03-27 09:07:45
مستوى الصحة: 79% الأهمية: 89%

"قطاع طرق متوحشون".. ياياني يشعر بالصدمة مما سمع في ماريوبول

المصدر: RT Arabic - روسيا التصنيف: سياسة
تاريخ الخبر: 2024-03-27 09:07:37
مستوى الصحة: 92% الأهمية: 85%

مقتل 7 لبنانيين بغارة إسرائيلية على مركز صحي (فيديو + صور)

المصدر: RT Arabic - روسيا التصنيف: سياسة
تاريخ الخبر: 2024-03-27 09:07:44
مستوى الصحة: 86% الأهمية: 89%

فوز الأرجنتين على كوستاريكا 3-1 وديا

المصدر: فرانس 24 - فرنسا التصنيف: سياسة
تاريخ الخبر: 2024-03-27 09:07:22
مستوى الصحة: 86% الأهمية: 92%

زاخاروفا: واشنطن فضحت نفسها حينما باشرت بالصراخ

المصدر: RT Arabic - روسيا التصنيف: سياسة
تاريخ الخبر: 2024-03-27 09:07:34
مستوى الصحة: 83% الأهمية: 100%

دوري "أن بي ايه": ليكرز يقلب الطاولة على ميلووكس باكس

المصدر: فرانس 24 - فرنسا التصنيف: سياسة
تاريخ الخبر: 2024-03-27 09:07:24
مستوى الصحة: 88% الأهمية: 98%

كوريا الشمالية تحتفل بذكرى مؤسسها عبر مهرجان فني دولي

المصدر: RT Arabic - روسيا التصنيف: سياسة
تاريخ الخبر: 2024-03-27 09:07:41
مستوى الصحة: 83% الأهمية: 85%

20 قرضا لتمويل المشاريع الزراعية السعودية

المصدر: جريدة الوطن - السعودية التصنيف: إقتصاد
تاريخ الخبر: 2024-03-27 06:23:56
مستوى الصحة: 47% الأهمية: 64%

آخر تطورات العملية العسكرية الروسية في أوكرانيا /27.03.2024/

المصدر: RT Arabic - روسيا التصنيف: سياسة
تاريخ الخبر: 2024-03-27 09:07:30
مستوى الصحة: 85% الأهمية: 85%

تحميل تطبيق المنصة العربية