هذه الموضوعة مرشحة حالياً لتكون منطقة مختارة، شارك في تقييمها وفق الشروط المحددة في معايير الموضوعة المختارة وساهم برأيك في صفحة ترشيحها.
تاريخ الترشيحخمسة أبريل 2020
دائرة
رسم توضيحي للدائرة، يُوضِّحُ القطرَ ونِصفَ القطرِ والوترَ وقوساً منها والمحيطَ.
أضلاع ورؤوس حافة واحدة
المساحة ط نق۲ أو
المحيط ۲ط نق أو
زاوية داخلية (درجة) عديمة الزَّوايا.
خصائص مُنحنىً.

في الهَندسِةِ الرّياضِيّةِ، الدَّائرَة هي شكلٌ هَندَسيٌّ مُستوٍ، تُعرَّفُ على أنّها المحلُّ الهندسيُّ لنقاطِ تقع على سطح مُستوٍ وتَبعدُ بُعداً ثابتاً من نقطةٍ ما. تُسمَّى هَذه المجمُوعةُ غَيرُ المُنتَهيةِ من النقاطِ مُحيط الدائرةِ أو«المُحيطُ» اختصاراً. بينما النُّقطةُ الثابتةُ تُسمَّى مركزَ الدائرةِ. وأخيراً، تُسمّى المَسافةُ من أيِّ نُقطَةٍ على المُحيطِ إلى المركزِ نصفَ القُطْرِ أوشعاعاً، والقطرُ هوقِطعةٌ مُستقيمةٌ تمرُ بمركز الدائرة وتصل بين نقطتين على المحيط. تُصنُّفُ الدائرةُ على أنَّها بترٌ ناقصٌ تلاشت بؤرتاهُ في نُقطةٍ واحدة أوبتر مخروطي مُنعدِمُ الاختلافِ المركزيّ؛ وعلى ذلك، فإنَّ الدائرةَ بترٌ مخروطيٌّ ينتج عن تقاطع المخروط مع مستوىً مُوازٍ لقاعدتهِ. كما عُرِّفتِ الدائرةُ بوصفها مُضلَّعاً مُنتظماً لانهائي الأضلاع.

ارتبطتِ الدائرةُ قديماً بالكثيرِ منِ المسائل الرياضية، كما أنَّ لها ارتباطاً وثيقاً ببقيةِ الأشكالِ الهندسيّةِ من الزوايا، البترِ المستقيمةِ والمُضلّعاتِ. يُطلق على المُضلعات التي توجَدُ دائرةٌ تُحيطها صفة «الدائرية»، أي أنَّ رؤوسَها مُشتَرِكَةٌ بِدَائِرَةٍ. ولهذهِ المُضلعاتُ قوانينُ ومبرهناتٌ خاصّةٌ تنطبق عليها. كانت الدائرةُ محطَّ اهتمامٍ بالأخصِّ عِندَ الإغريقِ القدماء. يَنتُجُ عن قِسْمَةِ طولِ مُحيطِ الدّائرةِ على طولِ قطرِها الثّابت الرّياضي أوط. وقد ابتكر أَرْخَمِيدِس طريقةً لتقريبِ قيمة عبر حصر الدائرة بين مُضلّعين وحَاوَلَ -في مسألةٍ عُرفَت بمسألة «تربيع الدائرة»- تَحويلَ الدّائرةِ إلى مربعٍ ذي المِساحَةِ ذاتها باستِعْمالِ فِرْجَارٍ ومَسطَرَةٍ فقطْ ولكنّه فشلَ في ذلك. قاسَ أبولونيوس وغياث الدين الكاشي قيمة بدقةٍ عاليةٍ. وحَاولَ المَصريُّونَ القُدماءُ والبابليّون إيجادَ مساحةِ الدائرةِ. تُحسَبُ مساحةُ الدائرةِ بضرب في مُربَّعِ نصف قطرها. وتختصُّ الدائرةُ عن غيرها من الأشكال الهندسية الأخرى بأنَّ لها أكبر مساحةٍ بالنِّسبةِ لطولِ مُحيطِها.

وضع فلاسفة الأغريق القدماء نموذج مركزية الأرض الذي استندوا فيه على أنَّ الأرض كرةٌ تقع في مركز الكونِ والسماوات وتدور حولها بقية الأجرام السماوية في دوائرَ. وعندما قدَّم نيكولاس كوبرنيكوس نظرية مركزية الشمس، اعتبر حتى نسيج الكون يتكون من حلقات دائرية حول الشمس. إلى حتى توصَّلَ كيبلر إلى حقيقة شكل مدارات الأجرام السماوية، وهي قطوع ناسيرة بدلاً من كونها دوائرَ، وحدد نيوتن الشروط التي يجب حتى تتوفر في الجسم حتى يحذومساراً دائرياً.

تُعتبرُ الدائرةُ أحد أكملِ الأشكال الهندسية وأكثرها مثاليةً، وكان لها أهميَّة في التقنية، الفنون، الأديان والثقافات. تُرسَمُ الدوائرَ باستعمال الفرجار. والفرجار هوالأداة الوحيدة إلى جانب المسطرة المسموح باستخدامها في الهندسة الإقليدية؛ وهذا ما جعلها تُسمَّى «هندسة المسطرة والفرجار».تربيع الدائرة، تثليث الزاوية ومضاعفة المُكعَّب كانت من أبرز المسائل الرياضية والمواضيع التي حاول فيها الرياضيون على مر التاريخ، إلى حتى أثبت بيير وانتزل وفيردينوند فون ليندمان استحالة تِلكُمُ المسائل.

القُطوعُ المخروطيَّةُ
هذه الموضوعةُ جزءٌ من سلسلةِ القطوع المخروطية
بتر مكافئ
المعادلة
الانحراف المركزي()
البعد البؤري()
بتر زائد
المعادلة
الانحراف المركزي ()
البعد البؤري()
بتر ناقص
المعادلة
الانحراف المركزي ()
البعد البؤري ()
دائرة (حالة خاصة من البتر الناقص)
المعادلة
الانحراف المركزي ()
البعد البؤري ()
• ' • '


تَحتَوي هذه الموضوعةُ عَلى تراميز ومعادلات رياضية؛ بدون دَعمِ تَصيِيرٍ مُناسبٍ، قَد تَظْهرُ عَلاماتُ استفهامٍ، صناديقٌ، ورموزٌ أخْرَى بدل الرموز الرياضية


مصطلحات أساسية

يُرمز للدائرة التي مركزها النقطة

جدول مصطلحات الدائرة الأساسية
المصطلح التّعريف الترميز العربي التّرميز اللاتيني ملاحظة
مركز نقطة ثابتة تبعد البعد نفسه عن جميع النقاط الواقعة على المحيط. م أو
محيط مسار المحل الهندسي لنقطة مُتحرّكة في مستوٍ تبعد بعداً ثابتاً عن المركز. مح
مساحة منطقة السطح المحصور بمحيط الدَّائرة. م
نصف قطر أوالشعاع: بترة مستقيمة تصل بين المركز وأي نقطة واقعة على المحيط. نق
بترة مستقيمة تصل بين أي نقطتين على محيط الدائرة.
وتر مار بمركز الدائرة. ق
جدول مصطلحات قِطَع وجُزئيّات الدائرة
الجزء التّعريف الرمز صورة
جزء متّصل من محيط الدائرة.
مساحة منحصرة بين نصفي قطر وقوسٍ واصلٌ بينهما.
بترة مساحة منحصرة بين وتر وقوسٍ يحصره.
مساحة تحصرها دائرة.
نصف قرص مساحة منحصرة بين قطر وقوسٍ يحصره.

التعريف

تعودُ تسمية وتعريفُ الدائرةِ في بعض اللغات إلى أشكال كانت في الطبيعة أواستصنعها الإنسان كالخواتم، الحلقات والعجلات، بينما في اللّغة العربيّةِ، تعود لفظة «دائرة» إلى العمل «دار» أوالجذر «د ور»، والدائرة هي ما أحاط بالشّيء وتعني أيضاً «الحلقة». اتى في لسان العرب لابن منظور: «دار الشيء، يدور دَوراً ودَوَراناً، واستدار، وأدرتُه أنا. والدهر دوَّار بالإنسان. وتدوير الشيء جعله مدوّراً، وفي الحديث: إذا الزمان قد استدار كهيئته يوم خلقَ الله السموات والأرض. استدار بمعنى إذا طاف حول الشيء، وإذا عاد إلى الموضع الذي ابتدأ منه...». يضيف ابن منظور: «والدائرة والدارة كلاهما: ما أحاط بالشيء. والدارةُ: دارة القمر التي حوله، وهي الهالة. ودارت عليه الدوائر: أي نزلت به الدواهي، والدائرة: الهزيمة والسوء، ينطق: عليهم دائرة السوء... والدَّوَّار والدُّوَّار من أسماء البيت الحرام، لأنهم يطوفون به في شبه دائرة...». وفي اللّغة الإنجليزيّة يعود أصل تسمية الدائرة (بالإنجليزية: Circle)‏ إلى الحدثة الإغريقيّة κίρκος/κύκλος (تُنطق: كيركوس/كوكلس) المُحرَّفة من الحدثة الإغريقية الهومرية κρίκος (كريكوس)، والتي تعني «الطّوق» أو«الخاتم».

وفقاً لتعريف الدّائرة الذي ينصُّ على أنها مجموعة نقاط على مستوى تبعد البعد ذاته عن نقطة ثابتة ما، فَيُمكِنُ إعادةُ صياغةِ التّعريفِ إلى أنَّ الدائرة هي منحنى مغلق أحادي البُعد، وبشكل مكافئ هي مُنحنى ترسمه نّقطةٌ متحرّكة تبعد بُعداً ثابتاً عن نقطة ثابتةٍ أخرى. وكونها كذلك فهي تقسم المستوى إلى جزأين: داخل الدائرة وخارجها. في الاستعمال اليومي المتداول، قد يستعمل مصطلح «دائرة» للإشارة إلى محيط الدائرة، كما أنه قد يستعمل للإشارة إلى ما يوجد بداخل الدائرة؛ لكن في الاستعمال التّقني الدّقيق، الدائرة هي المحيط فقط ويُسمّى ما داخلها قُرصاً. غالباً ما يُفرّق الرَّياضيُّونَ بين السطح الدائري المغلق أوالقرص والسطح الدائري المفتوح (يُسمّى بالدائرة الداخلية) اعتماداً على وقوع خط الدائرة في الاعتبار من عدمه.

تعريف إقليدس

عرَّف إقليدس الدائرة في كتابه: الأصول، كما يأتي:

الدّائرة هي شكلٌ مُسطّحٌ يَحصُرُه خطُ واحدٌ، بحيث تكونُ جميعُ البترِ المستقيمةِ مرسومةً من نقطةٍ مُعيّنة داخلها إلى الخط الحاصر مُتساوية. فإن الخط الحاصر يُسمّى مُحيطاً والنقطة المُعيّنة تُسمّى مركزاً

يُعبِّرُ الرياضيون عن تعريف إقليدس للدائرة أيضاً باستخدام نظرية المجموعات على النحوالآتي:

تعريف إقليدس في نظرية المجموعات — إذا سقطت النقطة على المستوى فإن الدائرة التي مركزها ونصف قطرها هي مجموعة جميع النقاط التي تنتمي إلى المستوى ، وتبعد عن النقطة مسافةً مقدارها .

ويمكن صياغة التعريف السابق رياضيَّاً بالشكل التالي:


تعريف أبولونيوس

تعريف أبولونيوس للدائرة.

أثبت أبولونيوس حتى الدائرة بالإمكان التعبير عنها على أنها المحل الهندسي لجميع النقاط التي نسبة بعدها عن نقطتين ثابتتين ثابتة. أورياضياً: بفرض أنَّ نقطتين ثابتتين على المستوى، فإنَّ الدائرةَ التي بُؤرَتَيْها هي المحل الهندسي لجميع النقاط التي تُحقِّقُ أنَّ:

النسبة التبادلية لدائرة
إسقاط النسب التبادلية من خط مستقيم إلى دائرة والعكس بمركزِ إسقاطٍ يقعُ على الدائرةِ. تُمثِّلُ نقاطُ التقاطُعِ رباعياً توافقياً.
النقاط مع مرتبطةٌ معاً تحت تحويلٍ إسقاطيّ. لذا فإن نسبتهم التبادلية ثابتة. وبمعنىً آخر، فإنَّ أي خط آخر (بالأحمر) يبتر الخطوط السوداء فإنه يحمل نفس النسبة التبادلية.

تُعهد النسبة التبادلية للبترتين المستقيمتين

تُعرّفُ النقطة

تعريف الدائرة المعممة

في الهندسة التعاكسية، تتحول الدائرة الزرقاء المارّةُ بالدائرةِ الحمراءِ بعدَ التعاكسِ إلى دائرةٍ مُعممةٍ (الخط المُستقيم الأخضر).

في حال ما كانت

تأويل لانهائي

سلسلة من مضلعات منتظمة محصورة داخل دائرة. لاحظ أنه بازدياد عدد الأضلاع يقترب المُضلع شيئاً فشيئاً من حتىقد يكون دائرةً.

بالإمكان تعريف الدائرة على أنها مُضلّعٌ منتظمٌ بنصف قطر مماسي (بالإنجليزية: Inradius)‏ يُرمز إليه بالرمز

والمساحة، عبر العلاقة:
والنتيجتان تظهران مُتساويتين سواءً باستخدام نصف القطر المماسي أونصف القطر المحيطي، لأن نصفي القطرين يؤولان للقيمة نفسها عند المالانهاية.

الدائرة بوصفها حالة حدية

تُوصف الدائرة على أنها حالة حدية خاصة باستعمال أكثر من مُقاربةٍ رياضيةٍ: من أشهرها هي وصفها بتراً مخروطيّاً. تُصنّف الدائرة على أنها بيضاوي ديكارتي، نسبةً إلى رينيه ديكارت، وهومنحنى مستوومجموعة النقاط في المستوى التي لها نفس الهجريب الخطي (ويُعبّر عنه أيضاً بمجموعٍ موزونٍ) بالنسبة لنقطتين ثابتتين في المستوى. وهي بذلكَ حالةٌ خاصّةٌ منه تكون عند انعدام أحد الأوزان وتؤوُّلِه للصفر.البيضاوي الفائق هومجموعة نقاط في المستوى تحقق:

القطوع المخروطية

تُوصَفُ الدائرةُ باعتبارها حالةً خاصةً من البتر الناقص، حيث تكونُ حينَ تنطبقا البؤرتان معاً لِتُكوِّنَ مركزَ الدّائرةِ؛ حينئذٍ،قد يكون الاختلاف المركزي مُساوٍ للصفر (

استيفاء المساحة

إن كان الشكلُ مقعراً، فبالإمكانِ زيادةُ مساحَتِه دون تغييرِ مُحيطه بأن يُطوَ جزؤه المقعّر ليكون مُحدّباً.
إذا كان الشكل مُمَطّطاً، فبالإمكانِ جعله أكثر استدارةً وبذلك زيادة مساحته دون تغيُّرٍ يطرأُ على طولِ مُحيطِه.

تعود مسألة المحيط الثابت إلى القِدمِ، وتصاغ كالآتي: «من بين جميعِ المُنحنياتِ المُغلَقةِ ذات مُحيطٍ مُعطىً، أيُّها يجعلُ مساحتها أكبر ما يُمكن؟» وُجِدَ أنّ هذه المسألةَ مُكافئةٌ لمسألة شبيهة: «من بين جميع المنحنيات المُغلقة ذات مساحةٍ مُعطاةٍ، أيُّها يجعلُ محيطَها أكبرُ ما يُمكن؟». وتختصُّ الدائرةُ بأنها الحل لهذا المسألة. إذ توصف على أنَّها الشكلُ الذي يحصر أكبر مساحةٍ نسبةً إلى طول مُحيطه.

ترتبط هذه المسألةُ بمفهومِ مبدأِ العملِ الأدنى في الفيزياء، والذي بالإمكان صياغته على الصورة: ما «العملُ الذي يجعل المساحة أكبر ما يُمكن بأقلّ جهدٍ ممكن؟» على الرغم من أنَّ الدائرةَ كانت الحل الأوضح لهذه المسألة، إلا أنّ إثباتَ ذلكَ كان صعباً. أوّل محاولة أنَجَزَتْ في السؤالِ كانت سنة 1838م عندما استخدم المهندس الرياضياتي السويسري جيكوب شتاينر طريقةً هندسيةً أُسميَت لاحقاً بطريقةِ شتاينر للاستنظار. أثبت شتاينر أنَّه إذا وُجِدَ حلٌّ لهذه المسألةِ فلا بُدّ وأنقد يكون دائرةً. استئنف رياضيّون حلّ شتاينر لاحقاً وأكملوه.

بدأ شتاينر بأول الإنشاءات الهندسية التي عُرفت جيداً؛ عملى سبيلِ المثالِ، إذا كان هناك منحنى مغلق ليس محدباً بالكامل، فبالإمكان إيجاد منحنى أكثر تحدباً منه وأعلى في المساحة عن طريق طَيّ الأجزاء المقعرة لجعلها محدبة. وبُرهِنَ أيضاً حتى أي شكل لامتماثل بالإمكان تمديده بحيث يُغطي مساحةً أكبر. ولأن الشكل الوحيد المُحدب والمتناظر تماماً هوالدائرة فإن الحل كان لا بد وأنقد يكون هو. مع ذلك، هذا الحل بمفرده لا يُقدّمُ بُرهاناً صارماً للمسألة، إذ أنَّه مليءٌ بالثغرات التي بحاجة إلى المراجعة.

غالباً ما يُعبّرُ عن مسألة المحيط الثابت بمتباينةٍ تربطُ طولَ منحنىً مغلقٍ بمساحته. تنص متباينة المحيط الثابت على أنَّ:

وتحقّق المساواةُ إذا وفقط إذا كان المنحنى دائرةً. مساحة القرص ذوالشعاع

تنص متباينة ثباتية المحيط على أنَّ بالتكافؤ، فإنّ نسبة ثباتيّةُ المحيط هي على الأقل لكل منحنى. أما بالنسبة للمضلعات المنتظمة النونية، فإنّ نسبة ثباتية المحيط هي:. إذا كان منحنى مغلقاً محدباً سَويَّاً فإنَّ متباينة ثباتية المحيط المُطوَّرة تنص على أنَّ:

حيث حتى ترمز إلى طول والمساحة التي يحصرها، والمساحة المتجهة له، على الترتيب. تحقق المساواة فقط وإذا فقط كان منحنى ثابت العرض.

دوائر بإعادة تعريف المسافة

رسم توضيحي لدوائر الوحدة في معايير مختلفة. حيثُ أنَّ جميع متجهٍ من نقطة الأصل إلى دائرة الوحدة يُساوي وحدةً واحدةً. يُحسَبُ الطولُ بناءً على صيغة المسافة المرتبطة مع .

تعريفُ دائرةٍ على أنها مجرد مجموعة نقاط ذات بعد ثابت عن نقطة يُؤدِّي إلى ضمّ أشكالٍ أخرى إلى هذا التعريف. تُعدّ هذه الأشكالُ دوائرَ بسبب يعود إلى تعاريفٍ مُختلفةٍ للمسافة عن التعريف الإقليدي لها المُعتاد. ففي المعيار-

بينما في الهندسة الإقليدية، وكحالةٍ خاصةٍ، تكون ، وبهذا تكون الصيغة المعروفة:

في هندسة سيارة الأجرة، تكون

النَّتائِجُ التَّحليليَّة

يرتبط الشّعاع مع القطر بالعلاقة

المُحِيطُ وثَابِتُ النّسبة

ثابت النِّسبة هوطول مُحيط دائرة قطرها وِحْدة واحدة.

يتناسبُ طولُ مُحيطِ الدائرةِ مع طول قطرِها. ويُرمز لهذه النسبة بـ«

في مسائل الدّائرة وإيجاد المجاهيل منها، غالباً ما يُستعملُ تَقريبٌ لقيمة ، وهومُشتَقٌّ من مُتباينة أرخميدس التي أوجدها عبر حصر مُحيط الدائرة بين مُضلَّعين. الفقرة الآتية توضح التقريبات الشّائعة لقيمة :
على الرغم من تعريف

المِساحَةُ

توضيح للطريقة المُستخدمة في استنتاج قانون مساحة الدائرة تقديريّاً.

تَتَناسبُ مِسَاحةُ الدّائرةِ طرديّاً مع مُربّع نصفِ القطرِ بثابتِ تناسبٍ يُطلق عليهِ

الأقْواسُ

يُعبِّرُ مصطلحُ «قياس القوس» إلى قياسِ الزاويةِ المركزيةِ التي تَحصِرُ القوسَ. وباعتبار حتى الدائرة قوساً مُتَّصِلَ الطَّرفَينِ فإن قياسُها بالدرجاتِ

الراديان
يُعرَّف القوس الذي قياسه درجة واحدة على أنه من قياس الدائرة كاملةً. يُعرَّف القوس الذي قياسه راديان واحد على أنه القوس الذي طوله نصف قطر الدائرة الأصلية .
النقطتان تقسمان الدائرة إلى قوسين: قوس أكبر، وقوس أصغر.

إذا كانت نقطتين مختلفتين على الدائرة فإنهما يقسمان الدائرة إلى قوسين: قوس أصغر ، وقوس أكبر يتممان بعضهما بعضاً. يُرمَز إلى القوس الأكبر أحياناً بالرمز عِوَضاً عن ذكر « الأكبر». يُعرّف القوس الأصغر على أنَّه مجموعةُ النّقاط الناتجةِ عن تقاطعِ الدائرةِ مع نقاطِ الزاويةِ المركزية الداخلية ويُعبَّرُ عنه أيضاً بأنه القوس الأقصر طولاً الذي يصل بين النقطتين على الدَّائرة، حيثُ يُساوي قياسه قياسَ الزَّاويةِ المركزيةِ المُقابلةِ لَهُ، ويقل عن . على الوجه اللقاء، فإن القوس الأكبر هومجموعةُ النّقاط الناتجةِ عن تقاطعِ الدائرةِ مع نقاطِ الزاويةِ المركزية المُنعكِسة ويُعبَّرُ عنه أيضاً بأنه القوس الأقصر طولاً الذي يصل بين النقطتين على الدَّائرة، حيثُ يُساوي قياسه قياسَ الزَّاويةِ المركزيةِ المُقابلةِ لَهُ، ويزيد عن . تُسمَّى النقطتان طرفا القوس أوطرفا الوتر . في حالِ كَوْنِ النُّقطتينِ نقطتينِ متقابلتينِ قُطريَّاً، فإن كُلاً مِن القَوسَيْنِ المُقَابِلَيْنِ لَهُمَا القياس نفسه، ويُسمَّى القوسُ الواحدُ نِصفَ دَائرةٍ. وكُلُّ قِطْرٍ في دائرةٍ ما يُحدِّدُ نِصفَيْ دائرةٍ.

إذا كانَ طُولُ القوْسِ يُساوي ، فإنَّ النسبةَ بينَ طولِ القوسِ إلى مُحيطِ الدَّائرةِ يُساوي نسبةَ قياسِ القوسِ إلى قِياسِ الدَّائرةِ كاملةً.

القوس الأصغر القوس الأكبر (أواختصاراً ) نصف الدَّائرة

البتر والجزئيات

القرص

هومنطقة المستوى التي تحصرها الدّائرة. ويعرَّف رياضيَّاً:.

القطاع

قطاع دائري في دائرةٍ شعاعها ، مظلل بالأخضر، ويُغطّي قوساً طوله .

يعتمد حجم قطاع الدائرة على قياس الزاوية المركزية التي يحصرها ونصف قطر الدائرة. حيث يُمثِّل القطاع نسبةً من مساحة الدّائرة الكُلّية هي نفسها نسبة قياس زاويته المركزية على قياس الدائرة الكُلّية. أي أن: مساحة القطاع مُساوية لحاصل ضرب نسبة زاويته المركزية لزاوية الدائرة الكلية في مساحة الدائرة الكُلّية.

تُستعمل القطاعات كذلك في الإحصاء لتمثيل البيانات. وبطريقةٍ مُشابهة، يُؤخذ تناسب زاوية القطاع المركزية إلى مع النسبة المئوية للبيانات، حيث تُمثّل الدائرة الكاملة في الإحصاء نسبة .

الزوايا

تصنيفات الزوايا المتعلقة بالدائرة حسب مسقط رأسها:
الزاوية التّعريف مسقط رأس الزَّاوية قياس الزَّاوية ملاحظة
زاوية مركزية زاوية محصورة بين نصفي قطرين ويُرمز لها بـ مركز الدَّائرة قياس القوس اللقاء
زاوية محيطية زاوية محصورة بين وترين متلاقيين على المحيط محيط الدَّائرة نصف قياس القوس اللقاء
زاوية مماسية زاوية محصورة بين مماس ووتر يمر بنقطة التماس محيط الدائرة نصف قياس القوس المَحصُور.
زاوية خارجة زاوية امتداد أحد زوايا رباعي دائري المحيطة محيط الدائرة قياس الزاوية اللقاءة لها من الرباعي.
زاوية داخلية زاوية محصورة بين قاطعين داخل الدَّائرة داخل الدَّائرة نصف مجموع قياسي القوس اللقاء للزاوية والقوس اللقاء للزاوية التي تقابلها بالرأس
زاوية خارجيَّة زاوية محصورة بين قاطعين خارج الدَّائرة خارج الدَّائرة نصف الفرق المطلق بين قياسي القوسين اللقاءين لها
حالات الزاوية المحيطية بالنسبة لضلعي الزاوية المركزية
الحالة الأولى الحالة الثَّانية الحالة الثَّالثة مبرهنةُ طالس (حالة خاصَّة)
يَقَعُ مَرْكَزُ الدَّائِرَةِ خَارِجَ الزَّاويةِ المُحيطيَّةِ. يَقَعُ مَرْكَزُ الدَّائرةِ على أحدِ ضِلْعَيْ الزَّاويةِ المُحيطيةِ. يَقعُ مَركَزُ الدَّائرةِ دَاخلَ مَنطقةِ الزَّاوية المُحيطيَّة. الزَّاويةُ المُحيطيةُ زَاوِيةٌ مُستقيمةٌ.

مبرهنة الزوايا المماسية والمحيطية — الزَّاويةُ المركزيةُ تُساوي ضِعفَ الزاويةِ المُحيطيةِ المُشهجرةِ معها على القوسِ نفسه وضِعفَ الزاويةِ المماسية التي تحصر القوس نفسه.

المُبرهنة السابقة تُعطي علاقةً بين الزوايا المركزية وبين الزوايا المماسية والمحيطية. كنتيجة، عند تثبيت قوسٍ ما في دائرة، فإنَّ الزوايا المحيطية التي تحصر هذا القوس متساوية. والعكس سليمٌ أيضاً، فالمحل الهندسي لرؤوس الزوايا متساوية القياسات التي تحصر بترةً مُستقيمةً ثابتةَ الطول هي قوس دائري. وينتج عن هذه المبرهنة أيضاً مبرهنة طالس: والتي تنص على أنَّ الزاويةَ المُحيطيةَ التي تَحصِرُ قطراً قائمةٌ.

مبرهنة الزاوية الداخلية — الزاوية الداخلية تُساوي نصف مجموع قياسي القوسين المَحصُورَينِ بين ضلعيها.


مبرهنة الزاوية الخارجية — الزاوية الخارجية تساوي نصف الفرق المطلق بين قياسي القوسين المحصورين بين ضلعيها.


النقاط

النِّقاطُ هِيَ نِقاطٌ دَاخليةٌ ومُحيطيَّةٌ وخَارِجَةٌ على التَّرْتيبِ. النقطتانِ نُقطَتانِ مُتقَابَلَتان قطْرياً.

هُناك ثلاثُ حالات ممكنةٍ لمسقطِ نُقطةٍ ما بالنسبةِ إلى دائرةٍ مُعطاةٍ في المستوى نَفسِهِ تُصنّفُ حَسب بُعدِها من مركز الدائرة: نقاط داخليَّة ومُحيطيَّة وخارجيَّة:

التصنيف التعريف الترميز مراجع
نقطة داخلية نقطة تقع داخل الدائرة، أي: تبعد عن المركز مسافةً أقل من نصف القطر.
نقطة مُحيطيَّة نقطة تقع على محيط الدائرة، أي: تبعد عن المركز مسافةً مساوية لنصف القطر.
نقطة خارجيَّة نقطة تقع خارج الدائرة، أي: تبعد عن المركز مسافةً أكبر من نصف القطر.
نقطتان متقابلتان أوالنقطتان المتقابلتان قطريَّاً هما نقطتا طرفي قطر ما في الدَّائرة

إنَّ التعريفَ الرياضيَّ المُقابلَ للجدول السابق بالإمكان التعبير عنه بمبرهنة المجموعات كالآتي: إذا كانت الدائرة مركزها والنقطة المتغيِّرةُ ، فإنَّ مجموعة نقاط في المستوى تُعرَّف على أنَّها:

تُصنَّفُ مجموعةُ النقاطِ الداخليةِ على أنَّها مجموعة محدبة: أي حتى الضلع الواصل بين أي نقطتين داخل الدائرة لا يبترها.

يُعهد زوج النقاط التي تمثل طرفي قطر في دائرة على أنهما نقطتان متقابلتان، وهما متماثلتان بالنسبة لمركز الدائرة. تُعرَّف مجموعة أزواج النقاط التي تحقق ذلك رياضياً:.

شكل توضيحي لقواطع مُختلفةٍ تمرُ بالنقطة وتبتر الدائرة .

قوة النقطة

تُعرّفُ قوةُ نقطة ما بالنسبة لدائرة ثابتة على أنها مربع المسافة بين النقطة ومركزِ الدائرة مطروحاً من مربع نصف قطر الدائرة. رياضيّاً: في قوة النقطة

كما تُعرّفُ قوة النقطة الواقعة خارج دائرة على أنّها مُربّعُ المماس الخارج من هذه النقطة إلى الدائرة. وتُثبت هذه العلاقات باستخدام مبرهنة فيثاغورس ومبرهنة تعامد شعاع الدائرة مع المماس عند نقطة التماس: لتكن نقطة تماس المماس الخارج من إلى الدائرة . من مبرهنة التعامد: ، بتطبيق فيثاغورس في المثلث القائم: ، فإنَّ أوبشكلٍ مكافئ:.

نظريات قوة النُّقطة
الاسم الصيغة الرياضية النص
إذا تَقاطعَ وَتَرانِ في دائرةٍ فَإنَّ حَاصلَ ضَرْبِ طُولَيْ جُزأيْ الوَتَرِ الأوَّلِ يُساوي حَاصِلَ ضَرْبِ طُولَيْ جُزْأيْ الوَتَرِ الثَّانِي.
مبرهنة القاطع إذا رُسِمَ قَاطِعَانِ لدائرةٍ من نُقطَةٍ خَارِجها، فإنَّ حَاصِلَ ضَرْبِ طُولِ القاطِعِ الأوَّلِ في طُولِ الجُزْءِ الخَارِجِيِّ مِنهُ، يُساوي حَاصِلَ ضَرْبِ طُولِ القَاطِعِ الثَّانِي فِي طُولِ الجُزْءِ الخَارِجِيِّ مِنهُ.
مبرهنة قاطعُ التَّماسِ إذا رُسِمَ مَمَاسٌّ وقَاطِعٌ لدائِرَةٍ من نُقطَةٍ خَارِجها فإنَّ مُربَّعَ طُولِ المَماسِ يُساوي حَاصِلَ ضَرْبِ طُولِ القَاطِعِ في طُولِ الجُزءِ الخَارِجِيِّ مِنْه.تEعهد في الهندسة المستوية بأنها عدد حقيقي يعبر عن المسافة النسبية لنقطة معطاة في دائرة.


مبرهنتا قِطَعِ الوترِ والقاطع. مبرهنة قاطعِ التَّماسِّ.

أزواج الدوائر

تَصْنِيفُ أزْواجِ الدَّوائِرِ حَسب بُعدِها عن بعضها
دائرتان متباعدتان دائرتان متماستان دائرتان متقاطعتان
دائرتان لا تشهجران في أي نقطةٍ دائران تمسان مستقيماً في نقطةٍ مشهجرةٍ أعلى عدد ممكن من التقاطعات بين دائرتين هوتقاطعان.
خارجيَّاً داخليَّاً
دائرتان متماسَّتان يقع مركز كلِّ منهُما خارج مُحيط الأخرى دائرتان متماسَّتان يقع مركز إحداهما في قرص الأخرى

الدائرتان المتقاطعتان هما دائرتان تشهجران بنقطتين وهوأعلى عدد من النقاط الممكن اشتراكه بين دائرتين. يُعبّر عن ذلك رياضياً كالآتي: باعتبار


تَصْنِيفُ أزْواجِ الدَّوائرِ حَسب مَرَاكِزِها وَأنْصافِ أقْطارِها
الدائرتان المُتعامدتان: في الهندسة التعاكسية، هما دائرتان، المماسان لهما في نقطتَيْ تقاطُعِهِما يمر بمركزِ كُلٍّ منهُما. الدائرتان المتطابقتان: دائرتان لهما نصف القطر نفسه. الدائرتان متحدتا المركز أوفي الهندسة التعاكسية: الدائرتان المتوازيتان هما دائرتان يشهجران في المركز نفسه. الدائرتان المنطبقتان: دائرتان متحدتان مركزياً لهما الشعاع نفسه.

الدائرتان متحدتا المركز: التي نصف قطرها و التي نصف قطرها دائرتان متحدتا المركز. تُعهد الدَّائرة على أنها مُطابقةٌ إلى دائرةٍ أُخرى إذا وفقط إذا تطابقت أنصاف أقطارهما، ويحققان: .

أشكالٌ مُركَّبةٌ من دوائرَ
: شكل شبيه بالخاتم محصور بدائرتين متحدتيّ المركز. العدسة: تقاطع قرصين. الهلال: جزء الدائرة غير المتقاطع. مثلث رولو: تقاطع ثلاثة دوائر تمر جميع منهم في مركز الأخرى : أنصاف دوائرَ تشهجر في قاعدة ما
حل جُزئي من مسألة تربيع الدائرة اقترحه أبقراط. مساحة المنطقة المظللة تساوي مساحة المثلث ABC. لم يستطع أحد إكمال حل مسألة تربيع الدائرة. وقد أثبت استحالتها.

تُسمَّى العدسة الناتجة عن تقاطع دائرتين متطابقتين عدسة متناظرة، عدا ذلكَ فتُسمّى عدسة جامعة أوغير متناظرة. تُقاس مساحة العدسة المتناظرة بدلالة زاوية القوس المحصورة به بالراديان ونصف قطر الدائرتين بالصيغة الآتية:

بإزالة العدسة من إحدى الدوائر المُتقاطعة يتكوَّن شكل الهلال. وبشكل أكثر عمومية، فإن تقاطع أي دائرتين يُنتج عدسةً وهلالينِ. هلال أبقراط هوهلال مُتكوِّن من تقاطع دائرتين، قُطر إحداهما هووترٌ في الأخرى.

الأوتار والمستقيمات

تَصْنِيفُ المستقيمات في الدَّائرةِ حسْبَ عدد نقاط تقاطعها معها وبُعدِها عن مركزها
المستقيم التعريف رياضياً ملاحظة
مستقيم يبتر الدائرة في نقطتين. مُستقيمٌ يبعدُ عنِ المركزِ مَسافَةً أصغر من نِصْفِ قِطرِ الدَّائرةِ ()
مستقيمٌ مَاسٌّ مستقيم يُمسّ الدَّائرة في نقطة وحيدة. مُستقيمٌ يبعدُ عنِ المركزِ مَسافَةً مساويةً لنِصْفِ قِطرِ الدَّائرةِ ()
مستقيمٌ مَارٌّ مستقيم لا يمس ولا يبتر الدائرة في أي نقطة. مُستقيمٌ يبعدُ عنِ المركزِ مَسافَةً أكبر من نِصْفِ قِطرِ الدَّائرةِ ()
مستقيمٌ مُنَصِّفٌ مستقيم يمر بمركز الدائرة. مستقيم يمر بنقطة المركز، أوبُعدُه عن المركز معدومٌ. ()
تَصنِيفُ المُستقيمَاتِ المُشهجرة في دائرتين
المستقيم التَّعريف الترميز
خطُّ مركزين مستقيم يصل بين مركزي دائرتين
وتر مُشهجر وتر طرفاه هما نقطتا تقاطع دائرتين
مَماسٌ مشهجرٌ خارجيّ أومماس خارجي، مستقيم يمس كلتا الدائرتين ويبترُ امتدادَ خَطِّ المَركزين.
مماسٌ مشهجرٌ داخليّ أومماس داخلي، مستقيم يمس كلتا الدائرتين ويبتر البترة الواصلة بين المركزين.
بترة تماس بترة من مماس مشهجر طرفاها نقطتا تماس الدَّائرين
محور أساسي المحل الهندسي لمجموعة النقاط في المُستوى التي لها نفس القوة بالنِّسبة لدائرتين مُتباعِدَتين.

التناظر في الدائرة

رسم هندسي يُوضِّح أجزاء الدائرة المُتماثلة والمُعلَّمةُ بالألوان: جميعُ النقاط تتسامَتُ على العمود المنصف للبترة وهي بذلكَ تبعدُ البعدَ نفسه عن و.

في نظرية الزمر، الدائرة هي أكثرُ الأشكالِ تناظراً. أيُّ مُستقيمٍ مُنصِّفٍ (خطٍّ مُستقيمٍ يمرُ بمركزِ الدائرةِ) يُحَقِّقُ خاصيةَ التناظر الانعكاسي وخاصيةَ التناظر الدوراني. زُمرة تماثل الدائرة هي زمرةٌ متعامدةٌ

في الدائرة ذات المركز والوتر ، المثلث متطابق الضلعين. إذا كانت نقطة منتصف فإنَّ من تطابق (SSS)، وعليه فإنَّ وكذلك . أيضاً الزاويتان . إذا كانت نقطتا تقاطعِ المستقيمِ مع الدائرة، فإنَّ من تطابق (SSS) والذي يُنتج . كنتيجة، القوسان متطابقان أيضاً. بالمثل، (من تطابق SAS) و. وهذا يعني حتى الدائرةَ ونقطتي مُنتصفي القوس الأكبر والقوس الأصغر جميعهم يقعون على العمود المنصف للوتر . إذن، مركز أي دائرة هوتقاطع المنصفين العموديين لأي وترين على الدائرة.

إذا كانت

تتلخَّصُ النتائج السابقة في ما يلي:

  • العمود المنصف لوتر يُنصف القوسين اللذان يحصرهما ويمر بمركز الدائرة.
  • يتساوى وتران في الدائرة إذا وفقط إذا سقطا على مسافة واحدة من مركز الدائرة.
  • الوتران الموازيان في دائرة يقسمانها يحصران قوسين متساويي الأطول.
  • القطر العمودي على وتر في دائرة يُنصِّفه ويُنصِف كلاً من قوسيه. القطر الذي يُنصِّف وتراً (ليس قطراً) في دائرةقد يكون عموديَّاً على هذا الوتر. العمود المنصف لوتر في دائرة يمر بمركز الدَّائرة.
  • المماس عند نقطة التماس يتعامد مع بنصف القطر الواصل بينها وبين المركز.
  • المماسان من نقطة واحدة خارج الدائرة متطابقان.

التطابق في الدائرة

ليكن

العمق وطول الوتر

عمق القوس (بالأزرق) هوالعمود من منتصف القوس إلى منتصفِ وترِهِ.

عمق القوس (بالإنجليزية: Sagitta)‏ هوبترة مستقيمة تصل بين منتصف قوسٍ ومنتصف وتره. تُستعمل حسابات عمق القوس بكثافة في العمارة. يُحسب عمق القوس ذي الزاوية في الدائرة التي نصف قطرها بالصيغة:

بشكلٍ مُماثل، يُقاسُ طول الوتر المحصور في قوس قياس زاويته بالصيغة . أما إذا أُعطي وترٌ طوله وقوسٌ يحصر الوتر ذوعمقٍ مساوٍ لـ فباستعمال مبرهنة فيثاغورس يُقاس نصف قطر الدائرة المارَّة بالوتر وعمق القوس كالآتي:

خط القوة

إذا تقاطعت دائرتان، فإنّ خط قوتهما هوالمستقيم المار بنقطتي تقاطعهما أووترهما المشهجر.

خط القوة أوالمحور الأساسي (بالإنجليزية: Radical axis)‏ لدائرتين ما، هوالمحل الهندسي للنقاط في المستوى التي تتساوى قُوَّتها بالنسبة لهما. وبشكل مكافئ، إذا كانت الدائرتان متباعدتان ولا تحتوي إحداهما الأخرى فبالإمكان تعريف خط القوة على أنه المحل الهندسي للنقاط في المستوى التيقد يكون طول المماسين المارين بها والمماسين للدائرتين متساوٍ. المحور الأساسي دائماً يتَّخذ خطّاً مستقيماً تكون نقاطه متساوية القوى بالنسبة للدائرتين؛ ولذلك فإنه يُسمَّى بخط القوة. عدا أنه في حالة اتحاد الدائرتين مركزياً يصبح خط القوة غير مُعرَّف. وفي حالة تقاطع الدائرتين، فإن خط القوة يمر بنقطتي تقاطعهما أوتماسهما. خط القوة عمودي دائماً على الخط الواصل بين مركزي الدائرتين وهوأقرب لمحيط الدائرة الأكبر. ومن خصائصه:

  • خط القوة لدائرتين عمودي على المُستقيم المار بمركزيهما ويُنصِّفُ وترَهُما المُشهجرَ.
  • خط القوة لدائرتين متقاطعتين يمر بنقطتي تقاطعهما.
  • خط القوة لدائرتين متماسَّتين يمر بنقطة تماسّهما ويكون حينئذٍ مماسَّاً مُشهجراً لهما.
  • خط القوة لدائرتين مُتماسّتين من الخارج يمر بمنتصف بترة المماس المُشهجر الآخر لهما.
  • لأي ثلاث دوائر مراكزها ليست على استقامةٍ واحدةٍ، فإن محاورها الرَّئيسيَّة مثنى مثنى تتقاطع في نقطة واحدة تُسمَّى المركز الأساسي أومركز القوة للدوائر الثلاث.

مركز القوة

مركزُ قوةِ الدوائرِ الثلاثِ هومركزُ دائرةٍ وحيدةٍ تبترهم عمودياً .

لتكن دوائرَ غير متحدةٍ مركزياً مثنىً مثنىً. فإنَّ مبرهنة خط القوة تنصُّ على أنَّ الثلاثَ خطوط القوة لكل زوجِ دوائرَ إما حتى تتوازى أوتلتقي في نقطة تُسمَّى: مركز قوة الدوائر. ويُنطق تقنياً أيضاً عن خطوط القوى عندما تتوازى بأنّها تلتقي في نقطة في اللانهاية.

وبُرهانُ ذلك: من خواصّ خط القوة لزوجِ دوائرَ، أنَّ المماسات المنطلقة من نقطة تقع عليه لدائرتين تتطابق. فإذا التقى خطّ قوة الدائرتين مع محور الأساسي الدائرتين في نقطة فإنَّ المماسات المنطلقة من لجميعِ الدوائرَ تتطابق، أي أنَّ: وأيضاً فبالتعدّي، يُصبح وبتطبيق عكسِ مبرهنة خط القوة، فإنّ النقطة تقعُ على خط القوة للدائرتين وبذلكَ يحصل تلاقي جميع خطوط القوة في النقطة . من البرهانِ السابق، تَصيرُ النقطة مركزاً لدائرةٍ تبترُ الدوائر الثلاث. وتُعدّ هذه الدائرةُ دائرةً وحيدةً لكُلِّ ثلاثة أزواج من الدوائر وتكون مُتعامِدةً عليهم جميعاً.

العلاقات مع المضلعات

حالات وعلاقات الكائنات الهندسية فيما بينها
تعامد
تنصيف

لِكلّ مثلثٍ ثمَّةَ دائرةٌ وحيدةٌ تمرُّ برؤوسه. وتُسمَّى هذه الخاصيَّة التي تتمتع بها المُضلعات من حتى تقع رؤوسها على دائرة ما «الدّائريَّة»، فيُنطق عن المُضلّع أنه «دائري» إذا وُجدت دائرة تمر بجميع رؤوسه. أما النقاط التي تتمتع بهذه الخاصية فتُسمَّى نقاطاً مُشهجرةً بدائرةٍ. على الرغم من ان جميع المثلثات دائرية، إلا أنّ ليست جميع المُضلَّعات الأخرى تتمتع بنفس هذه الخاصية. عملى سبيلِ المثال، جميعُ المضلّعات المُحدَّبة تستحيل وجود دائرة تمر بجميع رؤوسها، وليست جميعُ الرباعيات لها دوائرَ مُحيطة. فجميعُ المُعيَّنات غير المربعة لا يُمكن حتى تقع رؤوسها على دائرة. هناك أشكال شهيرة تُصنَّف دائماً على أنها دائرية، من ضمنها المستطيل وشبه منحرف متساوي الساقين، واللذان يُصنّف من ضمنهما المُربّع أيضاً وكذلك المُضلَّعات المُنتظِمة. للرباعيات الدائرية والمضلعات الدائرية الأخرى عموماً نظريات خاصة تنطبق عليها.

هُناك علاقة أخرى تربط الدائرة بالمضلعات، وهي التّماسُّ. تُعرَفُ المضلعاتُ المماسيَّة على أنها مُضلّعات توجد لها دائرة تمسُّ جميعَ أضلاعها أوامتداداتها. جميع المُثلَّثات والمُضلّعات المنتظمة مُضلعات مماسية. ولها خواص ونظريات خاصة تنطبق عليها أيضاً.

المُثلَّث

رسمٌ يُوضَِحُ جميعَ الدوائرِ التي تَمسُّ أضلاعَ المثلثِ أوامتداداتِ أضلاعه. وهي ثلاثة دوائرٍ خارجيةٍ باللون البرتنطقي ودائرةٌ داخليةٌ زرقاء.

تُصنّف مراكز الدوائر الخاصة بالمثلث على أنها من مراكز المثلث. من أبرزها: دائرة المثلث الداخلية، دائرة المثلث المحيطة، دائرة النقاط التسع و3 دوائرَ خارجية للمثلث. لكل مثلث يُوجد دائرة وحيدة تمس جميع أضلاعه تُسمَّى الدَّائرة الدَّاخلية أوالدَّاخلة. الدَّوائر الخارجيَّة لمثلث لكل مثلث توجد ثلاث دوائر خارجية تمس امتدادات أضلاعه. تُنشأُ الدوائر الماسة للمثلث بأخذ منصفات الزوايا الخارجية والداخلية للمثلث، إذ تتقاطع هذه المنصفات في مراكز الدوائر الماسة. يمرُّ خط أويلر بمركزَي الدائرتين البارزتين في المثلث: دائرة النقاط التسع ودائرته المحيطة، بالإضافة إلى نقطتي ملتقى ارتفاعات المثلث وملتقى متوسطاته. كما تربط مبرهنة فويرباخ بين أبرز دوائر المثلث: دائرة النقاط التسع ودوائره الماسة: الدائرة الداخلية والدوائر الخارجية الثلاث.

تُعطى الإحداثيات الخطية الثلاثية لمركز دائرة المثلث المُحيطة بالصيغة:

يرتبطُ نصفُ قطرِ مُحيطةِ الُمثلَّثِ بعلاقةٍ هامّة تُسمّى قانون الجيوب أوقانون الجيوب المُوسَّع:
كما يُعبّرُ عنه في علاقاتٍ أخرى مُشتقّةٍ من قانون الجيب الموسّع وصيغة هيرون لمساحة المثلث:
تنُصُّ مبرهنةُ أويلر على أنَّ:

والصيغةُ المُثلَّثية المكافئة لما تجاوز تكون كالآتي:

تربط مبرهنة أويلر في الهندسة بين شُعاعَي الدائرة المحيطة والدائرة الداخلية بالعلاقة:
تُقاسُ المسافةُ بين مركز محيطة المثلث ونقطة تقاطع ارتفاعاته بالصيغة:
حتى لوسقطت نقطة تقاطع ارتفاعات المثلث خارجَه، فإن إنشاء دائرة النقاط التسع يبقى مُمكناً.

تنص مبرهنة كارنوعلى أنَّ مجموع الأبعاد المُؤشّرة من مركز محيطة المثلث إلى أضلاعه يساوي مجموع شعاعَيْ دائرتَيْ المثلث المحيطة والداخلية:

دائرة النقاط التسع هي دائرةٌ في المثلث تَمُرُّ بتسعِ نقاطٍ مُهمّةٍ فيه. تحديداً:
  • منتصف جميع ضلع المثلث.
  • مسقط جميع رأس المثلث.
  • منتصف جميع بترة واصلة بين رأس المثلث وملتقى ارتفاعاته.

من تعريفات دائرة النقاط التسع أنَّها صورة دائرة المثلث المحيطة بعد تحاكٍ مركزه ملتقى الارتفاعات ومعامل تصغير النصف. وكنتيجة، فإنَّ قطر دائرة النقاط التسع يساوي نصف قطر الدائرة المحيطة. وكذلكَ فإنَّ دائرة النقاط التسع تمر بمنتصف أيّ وتر يمر بنقطة ملتقى ارتفاعات المثلث. بينما بشكلٍ مُشابه، يُنصّف مركز دائرة النقاط التسع (والذي يُرمز إليه بالنقطة ) البترة المستقيمة الواصلة بين مركز محيطته ونقطة ملتقى ارتفاعاته أي أنَّ: .

الرباعي الدائري

رُباعَيَّاتٌ دَائريَّةٌ مُتنوِّعَةٌ. يَظهَرُ من أبرزها: المُستَطِيلُ والمُرَبَّعُ وشِبهُ المُنحَرِفِ مُتطابِقُ الساقينِ.

الرباعي الدائري هومُضلع رباعي تُوجَدُ دائرةٌ تمرُّ بجميعِ رؤوسِه. الشروط المذكورة للرباعي الدائري هي شروط مُتكافئة، أي أنَّ تَحقُّقَ أحد الشروط يُؤدي إلى تحقُّقِ بقيةِ الشروط. تُعرَف أيضاً الشروط على أنها شروطٌ كافية وضرورية أي أنَّ تحقُّقَ عكسِ الشرط المذكور يُؤدّي إلى حتىقد يكونَ الرباعيُّ دائرياً. يُعدُّ الشكلُ الرُّباعيُّ دائريَّاً إذا وفقط إذا:

  • تقاطعت مُنصَِفاتُ أضلاعِه العموديةِ في نُقطَةٍ واحدةٍ.
  • وُجِدَت زاويتان مُتقابلتان فيه مُتكاملتان.
  • وُجِدَت زاويتان متساويتان رأسهما إحدى رأسي الرُّباعي على جهةٍ واحدةٍ من قاعدته. (رياضيّاً: )
  • انطبقَ عليه عكسُ مبرهنة بطليموس.
  • انطبقت عليه عكس مبرهنة قوة النقطة.

جميعُ المربعات، المستطيلات، أشباه المنحرف متطابقة الساقين وأضداد متوازي الأضلاع رباعيات دائرية. بينما الطائرة الورقية تُعدُّ دائريةً إذا وفقط إذا احتوت على زاويتين قائمتين. والرباعي التوافقي هودائريقد يكون فيه حاصل ضرب أطوال أضلاعه المتقابلة متساوٍ.

بحسب صيغة مساحة براهماغوبتا، تُحسَب مساحة الرباعي الدائري الذي أطوال أضلاعه:

في القرن الخامس عشر الميلادي، استنتج العالم الهندي ڤاتاسِّيري پاراميشڤارا صيغة إيجاد نِصفِ قُطرِ الدَّائرةِ المُحِيطَةِ بدلالةِ أطوالِ الأضلاعِ ونصف المحيط:

مُضلَّعاتٌ مماسيَّة

شبه منحرف مماسي.

المُضلَّع المماسي هومضلع تُوجد دائرة ما تمس جميع أضلاعه. تُسمَّى هذه الدَّائرة: الدَّائرةَ الدَّاخليَّةَ للمضلَّع. الرُّباعي المُحيط بدائرة يختص بأن جميع مجموع طولي جميع ضلعين متقابلين منه متساوٍ. فإذا كان الرباعي المُحيط دائرياً أيضاً سُميَّ رباعيّاً ثُنائيَّ المركزِ.ويُختص الرباعي ثنائي المركز (بالإنجليزية: Bicentric quadrilateral)‏ على أنه رباعي مماسي ودائري ومن خواصه أنَّ مجموعَ أطوالِ أضلاعِه المتقابلةِ مُتساوٍ. بينما الرباعي ثنائي المركز الخارجي (بالإنجليزية: Ex-bicentric quadrilateral)‏ هورباعي مماسي خارجي ودائري في الوقت نفسه.

يحتوي المضلع المحدب على دائرةٍ داخليةٍ إذا وفقط إذا التقت جميع منصفات زواياه في نقطة وحيدة. تُعهد هذه النقطة على أنها مركز دائرته الداخلية. أما إذا كانت أضلاع مضلع ذو

مبرهنات

تربط مبرهنة بطليموس بين أطوال أضلاع الرباعي الدائري وقُطريه.

بالإضافة إلى مبرهنتَيْ خطُّ القوة وقوة النقطة اللتين ذُكرتا وبقية مبرهنات الزوايا الخاصة بالدائرة، فإنّ هناك مبرهناتٌ أخرى مُتعلقةٌ بالدائرةِ، من أبرزها وأكثرها استعمالاً:

مبرهنة بطليموس

مبرهنة بطليموس هي مبرهنة تربط بين أضلاع الرباعي الدائري وقطريه. سميت هذه المبرهنة نسبةً لعالم الفلك والرياضيات الإغريقي بطليموس. وتنص على أنَّ مجموع جداء كُلٌّ من ضلعي رباعي متقابلين مُساوٍ لجداء قُطرَيْه إذا وفقط إذا كان الرباعيُّ دائريّاً. يُعبَّرُ عن العلاقةِ السابقة رياضياً كالآتي: . كما أنَّ عكسَ المبرهنةِ سليمٌ أيضاً.

خط أويلر

يظهر مستقيم أويلر (بالأحمر) مارّاً بملتقى الارتفاعات (بالأزرق)، ومركز الدائرة المحيطة (بالأخضر)، وملتقى متوسطات المثلث (بالبرتنطقي) ومركز دائرة النقاط التسع (بالأحمر).

خط أويلر، نسبةً إلى ليونهارد أويلر، هومُستقيمٌ مُعرّفٌ لكلِّ مثلثِ مختلف الأضلاع. يمرُّ بعدّة مراكز بارزة للمثلث. حيث يمر من عدة نقاط هامة محددة في المثلث. برهن أويلر في عام 1767م حتى أربعة من مراكز المثلث تتسامت، وهي: ملتقى الارتفاعات ، ملتقى المتوسطات ، مركزَي الدائرتين المحيطية ودائرة النقاط التسع . تنطبق هذه النقاط عند كَوْنِ المثلث متطابقَ الأضلاعِ. يمكن رسم مستقيم أويلر بإيجاد أي نقطتين من النقاط الأربعة والوصل بينهما.

خط سيمسون

خط سيمسون (بالإنجليزية: Simson line)‏ هومستقيمٌ يمُرّ بمساقط نقطةٍ مشهجرةٍ مع مثلثٍ في دائرته المحيطة على أضلاعه. رياضياً: إذا كان

مبرهنة باسكال

خط باسكال GHK للسداسي المُركّب ABCDEF المحصور في شكلٍ بيضاويٍّ. الأضلاع المتقابلة للسداسي لها اللون ذاته.

في الهندسةِ الإسقاطية، تنصُّ مُبرهنةُ باسكال (بالإنجليزية: Pascal's theorem)‏ على أنَّ لأيّ ستِّ نقاطٍ على بترٍ مخروطيٍّ (أي: بتر ناقص، مكافئ أوزائد) وُصِلَت بينَهم بترٌ مستقيمةٌ بأيّ ترتيبٍ بحيث تُشكّل سداسياً، فإنَّ أزواجَ الأضلاع المتقابلة من السداسي (أوامتداداتها) تتتلاقى في نقاطٍ تتسامتُ على خطّ يُسمّى خطَّ باسكال للسداسي. أسميت المبرهنة نسبةً إلى بليز باسكال، وتصحُّ أيضاً في الهندسةِ الإقليدية إلا حتى هناك حالة خاصة من حتى تتوازى المستقيمات ينبغي حتى تؤخذ بعينِ الاعتبار.

الصيغة الرياضية لمبرهنة باسكال هي كالآتي: لأي سداسي تقع رؤوسه على بترٍ مخروطيٍّ فإنّ ملتقياتِ أزواج المستقيمات الآتية مُتسامتة:

.

كنتيجة لمبرهنة باسكال، تنتج العلاقة الآتية بين أطوال الأضلاع:

مبرهنة مونج

مبرهنة فويرباخ: دائرة النقاط التسع للمثلث تمس دوائره الماسّة جميعها. نقطة تماس دائرة النقاط التسع مع الدائرة الداخلية هي نقطة فويرباخ.

تنصُّ مبرهنة مونج (بالإنجليزية: Monge's theorem)‏، نسبةً إلى غاسبار مونج، على أنَّ لأيِّ ثلاثة دوائر في المستوى لا تقع إحداهن داخل الأخرى تماماً، فإن ملتقيات أزواج المماسات المشهجرة الخارجية تُسمّى مراكز التشابه الخارجية لأزواج الدوائر لها متسامتة. بالإمكان إثبات مبرهنة مونج باستعمال مبرهنة ديزارغ وكذلك بمبرهنة مينيلاوس، حيث تُحسَب النسب الداخلة في المبرهنة باستعمال بدلالة أشعة الدوائر.

مبرهنة فويرباخ

تنص مبرهنة فويرباخ (بالإنجليزية: Feuerbach's theorem)‏ على أنّ دائرةَ النقاط التسع لمثلثٍ ما تمسُّ دوائرَه الخارجية والداخلية. تُسمّى نقطة تماس دائرة النقاط التسع مع الدائرة الداخلية نقطة فويرباخ بينما نقاط تماس دائرة النقاط التسع مع دوائر المثلث الخارجية فتُسمّى مُثلثَ فويرباخ. وتُعدُّ نقطة فويرباخ مركزاً للمثلث. أي حتى تعريفها لا يعتمد على أطوال أضلاع المثلث أوموضعه. أسميت النقطة نسبةً إلى المهندس الرياضي الألماني كارل فويرباخ والذي نشر مبرهنته عام 1822م. أقصر بُرهانٍ لمبرهنة فويرباخ هي باستخدام مبرهنة كايزي التي نشرها جون كايزي عام 1866م، وذلك بتطبيقها على المماسات لدوائر المثلث الخارجية والداخلية الأربع تمسُّ الدائرة الخامسة.

مبرهنة ميكيل

مبرهنة ميكيل (بالإنجليزية: Miquel's theorem)‏ هي مبرهنة تخص تقاطع ثلاثة دوائر تمر برؤوس مثلثٍ ما. ورياضياً: إذا كان

خط سيمسون (بالأحمر) للنقطة بالنسبة للمثلث يمُرُّ على النقاط . مبرهنة ميكيل: الدوائرُ المارةُ برؤوس مثلثٍ ونقاطٍ مشهجرةٍ على أضلاعه ، تُسمّى دوائرَ ميكيل وهي متلاقية في نقطةٍ ما . تنص مبرهنة دوائر ميكيل الست على أنَّ إذا رسمت خمسُ دوائرٍ تتشارك في نقاطٍ دائريةٍ، فإنَّ نقاط تقاطعهم الأخرى أيضاً تقع على دائرةٍ سادسةٍ.
مبرهنة ميكيل وشتاينر على الرباعي التام: الدوائر المارة بمثلثات رباعي تام تلتقي في نقطة وحيدة. مبرهنة ميكيل على الخماسي. مبرهنةٌ الفراشة: النقطة هي منتصف حيث أنَّ الوترين يمرّان بمنتصف .

مبرهنة كايزي

تنصُّ مبرهنة كايزي على أنَّ:

مبرهنة كايزي (بالإنجليزية: Casey's theorem)‏ وتُعرَفُ أيضاً على أنها تعميمُ مبرهنة بطليموس ، هي مبرهنةٌ في الهندسة الإقليدية أسميت نسبةً إلى الرياضياتي جون كايزي. تعريفها الرياضي هوكالآتي: لتكن دائرةً شعاعها . ولتكن أربعَ دوائرٍ غير متقاطعةٍ تقع داخل وتمسها على الترتيب. وليرمز إلى المماس المشهجر الخارجي للدائرتين ذواتي المركزين ، فإنَّ مبرهنة كايزي تنصُّ على أنَّ:

لاحظ أنَّ الحالةَ المُنعدمةَ لمبرهنة كايزي هي مبرهنة بطليموس. وعكسُ المبرهنةِ سليمٌ أيضاً، أي إذا وجدت أربعة دوائر تُحقق العلاقة السابقة فإنَّ هناكَ دائرةٌ تمسُّهم جميعاً.

مبرهنة الفراشة

تنصُ مبرهنة الفراشة على حتى الأوتار الواصلة بين طرفي وترين في دائرة يمران بمنتصف وتر ثالث يبتران الوتر الثالث في نقطتين متناظرتين بالنسبة لمنتصفه. تُوصف هذه العلاقة رياضياً كالآتي: إذا كانت النقطة

التحويلات الهندسية

هُناكَ تحويلان هندسيانِ رئيسانِ بالنسبةِ للدوائر:

التحاكي

مركز التشابه الخارجي لدائرتين مركز التشابه الداخلي لدائرتين
مركزا التشابه الداخلي والخارجي هونقطة يحدث عليها التحويل الهندسي لجميع النقاط على الدائرتين.

التحاكي (بالإنجليزية: Homothety)‏ هوتحويل هندسي ينقل الخطوط المُستقيمة المتوازية إلى خطوط مُتوازية بمعامل تكبير عدد حقيقي غير صفري. للدائرتان المُتباعدتان مركزا تشابهٍ (أوتحاكٍ) اثنان: مركز التشابه الخارجي ومركز التشابه الداخلي. ولأنَّ جميعَ الدوائرِ مُتشابهةٌ، فإنَّه يُوجد مركز تشابهٍ (أوتحاكٍ) واحدٍ على الأقل لكل دائرتين. بالإمكان إيجاد مركزَيْ التحاكي لدائرة بعدد من الطرق. في الهندسة التحليلية، مركز التشابه الداخلي يُحسَبُ بالمتوسط الموزون لمركزي الدائرتين موزوناً بنصفي قطري الدائرتين. رياضياً، لتكن مركَزَيْ الدائرتين و هما نصفَيْ قُطريهما. فإنَّ مركز التشابه الداخلي يُحسَب عبر الصيغة:

بينما يُحسب مركز التشابه الخارجي بصيغةٍ مُماثلة عدا أنَ الإشارة مُختلفة.

مبرهنة مونج: ملتقيات أزواج المستقيمات: الحمراء، الخضراء والزرقاء مُتسامتة (على الخط الأسود).

كنتيجةٍ من خصائص التحاكي، يمر خط المركزين لدائرتين بمركزَيْ تشابههما الخارجي والداخلي. بالنسبة للدائرتين المُتماستين خارجياً، فإنّ طول بترة التماس لهما مُساوٍ لوسط شعاعيهما التوافقي. تربط مبرهنة مونج بين مراكز التشابه الخاصة بثلاثٍ من الدوائر مثنىً مثنىً. وتنصُّ على أنَّ كلَّ ثلاثَةِ مراكزِ تشابهٍ لزوجٍ من الدوائر حاصل ضرب إشاراتها
تاريخ النشر: 2020-06-02 13:04:16
التصنيفات: قوالب هندسة إقليدية, دوائر, باي, قطوع مخروطية, منحنيات, هندسة الدائرة, هندسة إقليدية مستوية, Pages that use a deprecated format of the math tags, صفحات تستعمل قالبا ببيانات مكررة, مقالات تحتوي نصا بالإنجليزية, قالب أرشيف الإنترنت بوصلات واي باك, CS1 maint: ref=harv, صفحات بها مراجع بالإنجليزية (en), جميع المقالات ذات الوصلات الخارجية المكسورة, مقالات ذات وصلات خارجية مكسورة منذ يونيو 2017, صيانة CS1: نص إضافي, CS1: Julian–Gregorian uncertainty, أخطاء CS1: script parameters, صفحات بها مراجع بالفارسية (fa), الصفحات التي تستخدم وصلات ISBN السحرية, مقالات مرشحة لتكون مقالات مختارة, صفحات بها وصلات إنترويكي, بوابة رياضيات/مقالات متعلقة, بوابة هندسة رياضية/مقالات متعلقة, جميع المقالات التي تستخدم شريط بوابات, صفحات تستخدم خاصية P227

مقالات أخرى من الموسوعة

سحابة الكلمات المفتاحية، مما يبحث عنه الزوار في كشاف:

آخر الأخبار حول العالم

تعرف على أسعار العملات الأجنبية اليوم 4-10-2022 فى البنوك

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:55
مستوى الصحة: 55% الأهمية: 59%

التحقيق في ملفات فساد بالتعليم | جريدة الصباح

المصدر: جريدة الصباح - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:06
مستوى الصحة: 54% الأهمية: 68%

20 مليونا لولوج المحاماة | جريدة الصباح

المصدر: جريدة الصباح - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:05
مستوى الصحة: 56% الأهمية: 61%

تحت الدف | جريدة الصباح

المصدر: جريدة الصباح - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:04
مستوى الصحة: 58% الأهمية: 55%

من تاريخ المونديال «19».. لاعب البرازيل لا يعرف موعد النهائى

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:21:01
مستوى الصحة: 47% الأهمية: 51%

حبس تشكيل عصابي لسرقة لسرقة سور كوبري وقضبان سكة حديد بالإسكندرية

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:21:08
مستوى الصحة: 54% الأهمية: 57%

رحلة الموت.. تفاصيل جديدة فى وفاة 3 شباب بالصحراء

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:51
مستوى الصحة: 45% الأهمية: 51%

شركات فلاحية لتبييض أموال الذهب | جريدة الصباح

المصدر: جريدة الصباح - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:08
مستوى الصحة: 59% الأهمية: 63%

أخبار حالة الطقس اليوم 4-10-2022| درجة الحرارة فى مصر

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:54
مستوى الصحة: 45% الأهمية: 68%

أفضل الأدعية الصباحية اليوم الثلاثاء 4 أكتوبر 2022

المصدر: موقع الدستور - مصر التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:53
مستوى الصحة: 56% الأهمية: 68%

بالفيديو.. 5 خطوات للحصول على تذكرة "مواقف" الإلكترونية في أبوظبي

المصدر: الإمارات اليوم - الإمارات التصنيف: مجتمع
تاريخ الخبر: 2022-10-04 09:19:10
مستوى الصحة: 53% الأهمية: 61%

الحجز على حسابات فنادق | جريدة الصباح

المصدر: جريدة الصباح - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:03
مستوى الصحة: 50% الأهمية: 60%

عقود تأمين مزورة لطلبة | جريدة الصباح

المصدر: جريدة الصباح - المغرب التصنيف: سياسة
تاريخ الخبر: 2022-10-04 09:20:07
مستوى الصحة: 58% الأهمية: 57%

تحميل تطبيق المنصة العربية